Ivan Jacob Agaloos Pesigan 2023-05-29
Description
Generates confidence intervals for standardized regression coefficients using delta method standard errors for models fitted by lm()
as described in Yuan and Chan (2011: http://doi.org/10.1007/s11336-011-9224-6) and Jones and Waller (2015: http://doi.org/10.1007/s11336-013-9380-y). A description of the package and code examples are presented in Pesigan, Sun, and Cheung (2023: https://doi.org/10.1080/00273171.2023.2201277).
Installation
You can install the CRAN release of betaDelta
with:
install.packages("betaDelta")
You can install the development version of betaDelta
from GitHub with:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("jeksterslab/betaDelta")
Example
In this example, a multiple regression model is fitted using program quality ratings (QUALITY
) as the regressand/outcome variable and number of published articles attributed to the program faculty members (NARTIC
), percent of faculty members holding research grants (PCTGRT
), and percentage of program graduates who received support (PCTSUPP
) as regressor/predictor variables using a data set from 1982 ratings of 46 doctoral programs in psychology in the USA (National Research Council, 1982). Confidence intervals for the standardized regression coefficients are generated using the BetaDelta()
function from the betaDelta
package following Yuan and Chan (2011) and Jones and Waller (2015).
df <- betaDelta::nas1982
Fit the regression model using the lm()
function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)
Estimate the standardized regression slopes and the corresponding sampling covariance matrix.
Multivariate Normal-Theory Approach
BetaDelta(object, type = "mvn")
#> Call:
#> BetaDelta(object = object, type = "mvn")
#>
#> Standardized regression slopes with MVN standard errors:
#> est se t df p 2.5% 97.5%
#> NARTIC 0.4951 0.0759 6.5272 42 0.000 0.3421 0.6482
#> PCTGRT 0.3915 0.0770 5.0824 42 0.000 0.2360 0.5469
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 0.1124 0.4141
Asymptotic Distribution-Free Approach
BetaDelta(object, type = "adf")
#> Call:
#> BetaDelta(object = object, type = "adf")
#>
#> Standardized regression slopes with ADF standard errors:
#> est se t df p 2.5% 97.5%
#> NARTIC 0.4951 0.0674 7.3490 42 0.0000 0.3592 0.6311
#> PCTGRT 0.3915 0.0710 5.5164 42 0.0000 0.2483 0.5347
#> PCTSUPP 0.2632 0.0769 3.4231 42 0.0014 0.1081 0.4184
Other Feature
The package can also be used to generate confidence intervals for differences of standardized regression coefficients.
Citation
To cite betaDelta
in publications, please use:
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2023.2201277
References
Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80(2), 365–378. https://doi.org/10.1007/s11336-013-9380-y
National Research Council. (1982). An assessment of research-doctorate programs in the United States: Social and behavioral sciences. https://doi.org/10.17226/9781. Reproduced with permission from the National Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C.
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2023.2201277
Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670–690. https://doi.org/10.1007/s11336-011-9224-6
Documentation
See GitHub Pages for package documentation.