Calculates delta method sampling variance-covariance matrix for a function of parameters using a numerical Jacobian.
Usage
Delta(
  coef,
  vcov,
  func,
  ...,
  theta = 0,
  alpha = c(0.05, 0.01, 0.001),
  z = TRUE,
  df = NULL
)Arguments
- coef
 Numeric vector. Vector of parameters.
- vcov
 Numeric matrix. Matrix of sampling variance-covariance matrix of parameters.
- func
 R function.
The first argument
xis the argumentcoef.The function algebraically manipulates
coefto return a new numeric vector. It is best to have a named vector as an output.The function can take additional named arguments passed using
....
- ...
 Additional arguments to pass to
func.- theta
 Numeric vector. Parameter values when the null hypothesis is true.
- alpha
 Numeric vector. Significance level/s.
- z
 Logical. If
z = TRUE, use the standard normal distribution. Ifz = FALSE, use the t distribution.- df
 Numeric. Degrees of freedom if
z = FALSE.
Value
Returns an object
of class deltamethod which is a list with the following elements:
- call
 Function call.
- args
 Function arguments.
- coef
 Estimates.
- vcov
 Sampling variance-covariance matrix.
- jacobian
 Jacobian matrix.
- fun
 Function used ("Delta").
See also
Other Delta Method Functions:
DeltaGeneric()
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
func <- function(x) {
  y <- exp(x)
  names(y) <- paste0("exp", "(", names(x), ")")
  y[-1]
}
Delta(
  coef = coef(object),
  vcov = vcov(object),
  func = func,
  alpha = 0.05
)
#> Call:
#> Delta(coef = coef(object), vcov = vcov(object), func = func, 
#>     alpha = 0.05)
#>              est     se       z      p    2.5%   97.5%
#> exp(wt)   5.0853 7.5805  0.6708 0.5023 -9.7723 19.9429
#> exp(disp) 0.9662 0.0148 65.0838 0.0000  0.9371  0.9952