Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix
Source:R/betaDelta-beta-delta.R
BetaDelta.Rd
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix
Usage
BetaDelta(object, type = "mvn", alpha = c(0.05, 0.01, 0.001))
Value
Returns an object
of class betadelta
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- gamma
Asymptotic covariance matrix of the sample covariance matrix.
- acov
Asymptotic covariance matrix of the standardized slopes.
- vcov
Sampling covariance matrix of the standardized slopes.
- est
Vector of standardized slopes.
References
Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80(2), 365–378. doi:10.1007/s11336-013-9380-y
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670–690. doi:10.1007/s11336-011-9224-6
See also
Other Beta Delta Functions:
DiffBetaDelta()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
# Methods -------------------------------------------------------
print(std)
#> Call:
#> BetaDelta(object = object)
#>
#> Standardized regression slopes with MVN standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0759 6.5272 42 0.000 0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT 0.3915 0.0770 5.0824 42 0.000 0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#> 99.95%
#> NARTIC 0.7635
#> PCTGRT 0.6640
#> PCTSUPP 0.5276
summary(std)
#> Call:
#> BetaDelta(object = object)
#>
#> Standardized regression slopes with MVN standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0759 6.5272 42 0.000 0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT 0.3915 0.0770 5.0824 42 0.000 0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#> 99.95%
#> NARTIC 0.7635
#> PCTGRT 0.6640
#> PCTSUPP 0.5276
coef(std)
#> NARTIC PCTGRT PCTSUPP
#> 0.4951451 0.3914887 0.2632477
vcov(std)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.005754524 -0.003360334 -0.002166127
#> PCTGRT -0.003360334 0.005933462 -0.001769723
#> PCTSUPP -0.002166127 -0.001769723 0.005585256
confint(std, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.3420563 0.6482339
#> PCTGRT 0.2360380 0.5469395
#> PCTSUPP 0.1124272 0.4140682