Skip to contents

Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix

Usage

BetaDelta(object, type = "mvn", alpha = c(0.05, 0.01, 0.001))

Arguments

object

Object of class lm.

type

Character string. If type = "mvn", use the multivariate normal-theory approach. If type = "adf", use the asymptotic distribution-free approach.

alpha

Numeric vector. Significance level \(\alpha\).

Value

Returns an object of class betadelta which is a list with the following elements:

call

Function call.

args

Function arguments.

lm_process

Processed lm object.

gamma

Asymptotic covariance matrix of the sample covariance matrix.

acov

Asymptotic covariance matrix of the standardized slopes.

vcov

Sampling covariance matrix of the standardized slopes.

est

Vector of standardized slopes.

References

Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80(2), 365–378. doi:10.1007/s11336-013-9380-y

Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277

Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670–690. doi:10.1007/s11336-011-9224-6

See also

Other Beta Delta Functions: DiffBetaDelta()

Author

Ivan Jacob Agaloos Pesigan

Examples

object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
# Methods -------------------------------------------------------
print(std)
#> Call:
#> BetaDelta(object = object)
#> 
#> Standardized regression slopes with MVN standard errors:
#>            est     se      t df     p   0.05%   0.5%   2.5%  97.5%  99.5%
#> NARTIC  0.4951 0.0759 6.5272 42 0.000  0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT  0.3915 0.0770 5.0824 42 0.000  0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#>         99.95%
#> NARTIC  0.7635
#> PCTGRT  0.6640
#> PCTSUPP 0.5276
summary(std)
#> Call:
#> BetaDelta(object = object)
#> 
#> Standardized regression slopes with MVN standard errors:
#>            est     se      t df     p   0.05%   0.5%   2.5%  97.5%  99.5%
#> NARTIC  0.4951 0.0759 6.5272 42 0.000  0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT  0.3915 0.0770 5.0824 42 0.000  0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#>         99.95%
#> NARTIC  0.7635
#> PCTGRT  0.6640
#> PCTSUPP 0.5276
coef(std)
#>    NARTIC    PCTGRT   PCTSUPP 
#> 0.4951451 0.3914887 0.2632477 
vcov(std)
#>               NARTIC       PCTGRT      PCTSUPP
#> NARTIC   0.005754524 -0.003360334 -0.002166127
#> PCTGRT  -0.003360334  0.005933462 -0.001769723
#> PCTSUPP -0.002166127 -0.001769723  0.005585256
confint(std, level = 0.95)
#>             2.5 %    97.5 %
#> NARTIC  0.3420563 0.6482339
#> PCTGRT  0.2360380 0.5469395
#> PCTSUPP 0.1124272 0.4140682