Skip to contents

Model

The measurement model is given by 𝐲i,t=π›ˆi,t\begin{equation} \mathbf{y}_{i, t} = \boldsymbol{\eta}_{i, t} \end{equation} where 𝐲i,t\mathbf{y}_{i, t} represents a vector of observed variables and π›ˆi,t\boldsymbol{\eta}_{i, t} a vector of latent variables for individual ii and time tt. Since the observed and latent variables are equal, we only generate data from the dynamic structure.

The dynamic structure is given by π›ˆi,t=𝛂+π›ƒπ›ˆi,tβˆ’1+𝛇i,t,with𝛇i,tβˆΌπ’©(𝟎,𝚿)\begin{equation} \boldsymbol{\eta}_{i, t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{i, t - 1} + \boldsymbol{\zeta}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\zeta}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Psi} \right) \end{equation} where π›ˆi,t\boldsymbol{\eta}_{i, t}, π›ˆi,tβˆ’1\boldsymbol{\eta}_{i, t - 1}, and 𝛇i,t\boldsymbol{\zeta}_{i, t} are random variables, and 𝛂\boldsymbol{\alpha}, 𝛃\boldsymbol{\beta}, and 𝚿\boldsymbol{\Psi} are model parameters. Here, π›ˆi,t\boldsymbol{\eta}_{i, t} is a vector of latent variables at time tt and individual ii, π›ˆi,tβˆ’1\boldsymbol{\eta}_{i, t - 1} represents a vector of latent variables at time tβˆ’1t - 1 and individual ii, and 𝛇i,t\boldsymbol{\zeta}_{i, t} represents a vector of dynamic noise at time tt and individual ii. 𝛂\boldsymbol{\alpha} denotes a vector of intercepts, 𝛃\boldsymbol{\beta} a matrix of autoregression and cross regression coefficients, and 𝚿\boldsymbol{\Psi} the covariance matrix of 𝛇i,t\boldsymbol{\zeta}_{i, t}.

An alternative representation of the dynamic noise is given by 𝛇i,t=𝚿12𝐳i,t,with𝐳i,tβˆΌπ’©(𝟎,𝐈)\begin{equation} \boldsymbol{\zeta}_{i, t} = \boldsymbol{\Psi}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) \end{equation} where (𝚿12)(𝚿12)β€²=𝚿\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right) \left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Psi} .

Data Generation

Notation

Let t=1000t = 1000 be the number of time points and n=5n = 5 be the number of individuals.

Let the initial condition π›ˆ0\boldsymbol{\eta}_{0} be given by

π›ˆ0βˆΌπ’©(π›π›ˆβˆ£0,πšΊπ›ˆβˆ£0)\begin{equation} \boldsymbol{\eta}_{0} \sim \mathcal{N} \left( \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}, \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} \right) \end{equation}

π›π›ˆβˆ£0=(000)\begin{equation} \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \end{equation}

πšΊπ›ˆβˆ£0=(10.20.20.210.20.20.21).\begin{equation} \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{ccc} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.2 \\ 0.2 & 0.2 & 1 \\ \end{array} \right) . \end{equation}

Let the constant vector 𝛂\boldsymbol{\alpha} be given by

𝛂=(000).\begin{equation} \boldsymbol{\alpha} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{equation}

Let the transition matrix 𝛃\boldsymbol{\beta} be given by

𝛃=(0.7000.50.60βˆ’0.10.40.5).\begin{equation} \boldsymbol{\beta} = \left( \begin{array}{ccc} 0.7 & 0 & 0 \\ 0.5 & 0.6 & 0 \\ -0.1 & 0.4 & 0.5 \\ \end{array} \right) . \end{equation}

Let the dynamic process noise 𝚿\boldsymbol{\Psi} be given by

𝚿=(0.10000.10000.1).\begin{equation} \boldsymbol{\Psi} = \left( \begin{array}{ccc} 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.1 \\ \end{array} \right) . \end{equation}

R Function Arguments

n
#> [1] 5
time
#> [1] 1000
mu0
#> [1] 0 0 0
sigma0
#>      [,1] [,2] [,3]
#> [1,]  1.0  0.2  0.2
#> [2,]  0.2  1.0  0.2
#> [3,]  0.2  0.2  1.0
sigma0_l # sigma0_l <- t(chol(sigma0))
#>      [,1]      [,2]      [,3]
#> [1,]  1.0 0.0000000 0.0000000
#> [2,]  0.2 0.9797959 0.0000000
#> [3,]  0.2 0.1632993 0.9660918
alpha
#> [1] 0 0 0
beta
#>      [,1] [,2] [,3]
#> [1,]  0.7  0.0  0.0
#> [2,]  0.5  0.6  0.0
#> [3,] -0.1  0.4  0.5
psi
#>      [,1] [,2] [,3]
#> [1,]  0.1  0.0  0.0
#> [2,]  0.0  0.1  0.0
#> [3,]  0.0  0.0  0.1
psi_l # psi_l <- t(chol(psi))
#>           [,1]      [,2]      [,3]
#> [1,] 0.3162278 0.0000000 0.0000000
#> [2,] 0.0000000 0.3162278 0.0000000
#> [3,] 0.0000000 0.0000000 0.3162278

Visualizing the Dynamics Without Process Noise (n = 5 with Different Initial Condition)

Using the SimSSMVARFixed Function from the simStateSpace Package to Simulate Data

library(simStateSpace)
sim <- SimSSMVARFixed(
  n = n,
  time = time,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  alpha = alpha,
  beta = beta,
  psi_l = psi_l
)
data <- as.data.frame(sim)
head(data)
#>   id time          y1         y2         y3
#> 1  1    0 -1.84569501  0.5815402  0.8057225
#> 2  1    1 -1.34252674 -1.1219724  0.9873906
#> 3  1    2 -0.57123433 -1.1591679  0.1280274
#> 4  1    3 -0.44448720 -0.9783200 -0.3028425
#> 5  1    4 -0.28796224 -1.2222325 -0.3807219
#> 6  1    5  0.01622801 -1.2362032 -1.0056038
summary(data)
#>        id         time             y1                 y2          
#>  Min.   :1   Min.   :  0.0   Min.   :-1.84570   Min.   :-2.17817  
#>  1st Qu.:2   1st Qu.:249.8   1st Qu.:-0.31071   1st Qu.:-0.42138  
#>  Median :3   Median :499.5   Median :-0.01764   Median :-0.01740  
#>  Mean   :3   Mean   :499.5   Mean   :-0.01425   Mean   :-0.02021  
#>  3rd Qu.:4   3rd Qu.:749.2   3rd Qu.: 0.27870   3rd Qu.: 0.37021  
#>  Max.   :5   Max.   :999.0   Max.   : 1.56537   Max.   : 2.83572  
#>        y3           
#>  Min.   :-1.774215  
#>  1st Qu.:-0.363420  
#>  Median :-0.005834  
#>  Mean   :-0.009098  
#>  3rd Qu.: 0.341318  
#>  Max.   : 1.817859
plot(sim)

Model Fitting

Prepare Data

dynr_data <- dynr::dynr.data(
  data = data,
  id = "id",
  time = "time",
  observed = c("y1", "y2", "y3")
)

Prepare Initial Condition

dynr_initial <- dynr::prep.initial(
  values.inistate = mu0,
  params.inistate = c("mu0_1_1", "mu0_2_1", "mu0_3_1"),
  values.inicov = sigma0,
  params.inicov = matrix(
    data = c(
      "sigma0_1_1", "sigma0_2_1", "sigma0_3_1",
      "sigma0_2_1", "sigma0_2_2", "sigma0_3_2",
      "sigma0_3_1", "sigma0_3_2", "sigma0_3_3"
    ),
    nrow = 3
  )
)

Prepare Measurement Model

dynr_measurement <- dynr::prep.measurement(
  values.load = diag(3),
  params.load = matrix(data = "fixed", nrow = 3, ncol = 3),
  state.names = c("eta_1", "eta_2", "eta_3"),
  obs.names = c("y1", "y2", "y3")
)

Prepare Dynamic Process

dynr_dynamics <- dynr::prep.formulaDynamics(
  formula = list(
    eta_1 ~ alpha_1_1 * 1 + beta_1_1 * eta_1 + beta_1_2 * eta_2 + beta_1_3 * eta_3,
    eta_2 ~ alpha_2_1 * 1 + beta_2_1 * eta_1 + beta_2_2 * eta_2 + beta_2_3 * eta_3,
    eta_3 ~ alpha_3_1 * 1 + beta_3_1 * eta_1 + beta_3_2 * eta_2 + beta_3_3 * eta_3
  ),
  startval = c(
    alpha_1_1 = alpha[1], alpha_2_1 = alpha[2], alpha_3_1 = alpha[3],
    beta_1_1 = beta[1, 1], beta_1_2 = beta[1, 2], beta_1_3 = beta[1, 3],
    beta_2_1 = beta[2, 1], beta_2_2 = beta[2, 2], beta_2_3 = beta[2, 3],
    beta_3_1 = beta[3, 1], beta_3_2 = beta[3, 2], beta_3_3 = beta[3, 3]
  ),
  isContinuousTime = FALSE
)

Prepare Process Noise

dynr_noise <- dynr::prep.noise(
  values.latent = psi,
  params.latent = matrix(
    data = c(
      "psi_1_1", "psi_2_1", "psi_3_1",
      "psi_2_1", "psi_2_2", "psi_3_2",
      "psi_3_1", "psi_3_2", "psi_3_3"
    ),
    nrow = 3
  ),
  values.observed = matrix(data = 0, nrow = 3, ncol = 3),
  params.observed = matrix(data = "fixed", nrow = 3, ncol = 3)
)

Prepare the Model

model <- dynr::dynr.model(
  data = dynr_data,
  initial = dynr_initial,
  measurement = dynr_measurement,
  dynamics = dynr_dynamics,
  noise = dynr_noise,
  outfile = "var.c"
)

Fit the Model

results <- dynr::dynr.cook(
  model,
  debug_flag = TRUE,
  verbose = FALSE
)
#> [1] "Get ready!!!!"
#> using C compiler: β€˜gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
#> Optimization function called.
#> Starting Hessian calculation ...
#> Finished Hessian calculation.
#> Original exit flag:  3 
#> Modified exit flag:  3 
#> Optimization terminated successfully: ftol_rel or ftol_abs was reached. 
#> Original fitted parameters:  -0.003531293 -0.001280376 0.001523566 0.6895684 
#> 0.01390681 -0.003940273 0.4892806 0.6166874 -0.00850994 -0.1131785 0.4157686 
#> 0.4948645 -2.314722 -0.02295081 -0.01630225 -2.301541 -0.01437825 -2.302993 
#> -0.7217189 0.5433516 0.8634073 -0.2858639 -1.244706 0.1022364 0.00547225 
#> 0.08818863 -1.187881 
#> 
#> Transformed fitted parameters:  -0.003531293 -0.001280376 0.001523566 0.6895684 
#> 0.01390681 -0.003940273 0.4892806 0.6166874 -0.00850994 -0.1131785 0.4157686 
#> 0.4948645 0.09879361 -0.002267393 -0.001610558 0.1001565 -0.001402363 0.1000062 
#> -0.7217189 0.5433516 0.8634073 0.7513649 -0.9352283 0.07681685 2.169571 
#> -0.006941846 0.3205399 
#> 
#> Doing end processing
#> Successful trial
#> Total Time: 4.173625 
#> Backend Time: 4.163642

Summary

summary(results)
#> Coefficients:
#>              Estimate Std. Error t value   ci.lower   ci.upper Pr(>|t|)    
#> alpha_1_1  -0.0035313  0.0044508  -0.793 -0.0122548  0.0051922   0.2138    
#> alpha_2_1  -0.0012804  0.0044814  -0.286 -0.0100638  0.0075031   0.3876    
#> alpha_3_1   0.0015236  0.0044781   0.340 -0.0072533  0.0103004   0.3668    
#> beta_1_1    0.6895684  0.0112672  61.202  0.6674852  0.7116517   <2e-16 ***
#> beta_1_2    0.0139068  0.0093820   1.482 -0.0044815  0.0322952   0.0692 .  
#> beta_1_3   -0.0039403  0.0095679  -0.412 -0.0226930  0.0148125   0.3402    
#> beta_2_1    0.4892806  0.0113446  43.129  0.4670456  0.5115157   <2e-16 ***
#> beta_2_2    0.6166874  0.0094464  65.283  0.5981727  0.6352020   <2e-16 ***
#> beta_2_3   -0.0085099  0.0096336  -0.883 -0.0273915  0.0103716   0.1885    
#> beta_3_1   -0.1131785  0.0113361  -9.984 -0.1353969 -0.0909601   <2e-16 ***
#> beta_3_2    0.4157686  0.0094393  44.047  0.3972680  0.4342693   <2e-16 ***
#> beta_3_3    0.4948645  0.0096263  51.408  0.4759973  0.5137317   <2e-16 ***
#> psi_1_1     0.0987936  0.0019768  49.976  0.0949191  0.1026681   <2e-16 ***
#> psi_2_1    -0.0022674  0.0014078  -1.611 -0.0050266  0.0004919   0.0537 .  
#> psi_3_1    -0.0016106  0.0014066  -1.145 -0.0043674  0.0011463   0.1261    
#> psi_2_2     0.1001565  0.0020041  49.975  0.0962285  0.1040845   <2e-16 ***
#> psi_3_2    -0.0014024  0.0014162  -0.990 -0.0041780  0.0013733   0.1611    
#> psi_3_3     0.1000062  0.0020011  49.976  0.0960841  0.1039282   <2e-16 ***
#> mu0_1_1    -0.7217189  0.3854554  -1.872 -1.4771977  0.0337599   0.0306 *  
#> mu0_2_1     0.5433516  0.6542311   0.831 -0.7389178  1.8256210   0.2031    
#> mu0_3_1     0.8634073  0.2531618   3.410  0.3672192  1.3595954   0.0003 ***
#> sigma0_1_1  0.7513649  0.4740246   1.585 -0.1777063  1.6804360   0.0565 .  
#> sigma0_2_1 -0.9352283  0.7049527  -1.327 -2.3169103  0.4464537   0.0923 .  
#> sigma0_3_1  0.0768168  0.2221450   0.346 -0.3585794  0.5122131   0.3648    
#> sigma0_2_2  2.1695715  1.3671181   1.587 -0.5099307  4.8490737   0.0563 .  
#> sigma0_3_2 -0.0069418  0.3726743  -0.019 -0.7373700  0.7234863   0.4926    
#> sigma0_3_3  0.3205399  0.2023250   1.584 -0.0760099  0.7170897   0.0566 .  
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> -2 log-likelihood value at convergence = 8000.08
#> AIC = 8054.08
#> BIC = 8230.05

Parameter Estimates

alpha_hat
#> [1] -0.003531293 -0.001280376  0.001523566
beta_hat
#>            [,1]       [,2]         [,3]
#> [1,]  0.6895684 0.01390681 -0.003940273
#> [2,]  0.4892806 0.61668735 -0.008509940
#> [3,] -0.1131785 0.41576863  0.494864534
psi_hat
#>              [,1]         [,2]         [,3]
#> [1,]  0.098793608 -0.002267393 -0.001610558
#> [2,] -0.002267393  0.100156481 -0.001402363
#> [3,] -0.001610558 -0.001402363  0.100006157
mu0_hat
#> [1] -0.7217189  0.5433516  0.8634073
sigma0_hat
#>             [,1]         [,2]         [,3]
#> [1,]  0.75136488 -0.935228319  0.076816849
#> [2,] -0.93522832  2.169571479 -0.006941846
#> [3,]  0.07681685 -0.006941846  0.320539871

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. https://doi.org/10.1080/10705511003661553
Ou, L., Hunter, M. D., & Chow, S.-M. (2019). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal, 11(1), 91. https://doi.org/10.32614/rj-2019-012
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/