The Vector Autoregressive Model
Ivan Jacob Agaloos Pesigan
2025-05-10
Source:vignettes/var.Rmd
var.Rmd
Model
The measurement model is given by where represents a vector of observed variables and a vector of latent variables for individual and time . Since the observed and latent variables are equal, we only generate data from the dynamic structure.
The dynamic structure is given by where , , and are random variables, and , , and are model parameters. Here, is a vector of latent variables at time and individual , represents a vector of latent variables at time and individual , and represents a vector of dynamic noise at time and individual . denotes a vector of intercepts, a matrix of autoregression and cross regression coefficients, and the covariance matrix of .
An alternative representation of the dynamic noise is given by where .
Data Generation
Notation
Let be the number of time points and be the number of individuals.
Let the initial condition be given by
Let the constant vector be given by
Let the transition matrix be given by
Let the dynamic process noise be given by
R Function Arguments
n
#> [1] 1000
time
#> [1] 1000
mu0
#> [1] 0 0 0
sigma0
#> [,1] [,2] [,3]
#> [1,] 0.19607843 0.1183232 0.02985385
#> [2,] 0.11832319 0.3437711 0.13818551
#> [3,] 0.02985385 0.1381855 0.26638284
sigma0_l # sigma0_l <- t(chol(sigma0))
#> [,1] [,2] [,3]
#> [1,] 0.44280744 0.0000000 0.000000
#> [2,] 0.26721139 0.5218900 0.000000
#> [3,] 0.06741949 0.2302597 0.456966
alpha
#> [1] 0 0 0
beta
#> [,1] [,2] [,3]
#> [1,] 0.7 0.0 0.0
#> [2,] 0.5 0.6 0.0
#> [3,] -0.1 0.4 0.5
psi
#> [,1] [,2] [,3]
#> [1,] 0.1 0.0 0.0
#> [2,] 0.0 0.1 0.0
#> [3,] 0.0 0.0 0.1
psi_l # psi_l <- t(chol(psi))
#> [,1] [,2] [,3]
#> [1,] 0.3162278 0.0000000 0.0000000
#> [2,] 0.0000000 0.3162278 0.0000000
#> [3,] 0.0000000 0.0000000 0.3162278
Using the SimSSMVARFixed
Function from the
simStateSpace
Package to Simulate Data
library(simStateSpace)
sim <- SimSSMVARFixed(
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l
)
data <- as.data.frame(sim)
head(data)
#> id time y1 y2 y3
#> 1 1 0 -0.81728749 0.01319023 0.57975035
#> 2 1 1 -0.62264147 -0.94877859 0.54422379
#> 3 1 2 -0.06731464 -0.69530903 -0.09626706
#> 4 1 3 -0.09174342 -0.44804477 -0.27983813
#> 5 1 4 -0.04104160 -0.72769549 -0.19238403
#> 6 1 5 0.18907246 -0.81602072 -0.73831208
summary(data)
#> id time y1 y2
#> Min. : 1.0 Min. : 0.0 Min. :-2.6043472 Min. :-2.6896682
#> 1st Qu.: 250.8 1st Qu.:249.8 1st Qu.:-0.2985133 1st Qu.:-0.3937008
#> Median : 500.5 Median :499.5 Median :-0.0006372 Median :-0.0001104
#> Mean : 500.5 Mean :499.5 Mean :-0.0003479 Mean : 0.0002634
#> 3rd Qu.: 750.2 3rd Qu.:749.2 3rd Qu.: 0.2976899 3rd Qu.: 0.3954906
#> Max. :1000.0 Max. :999.0 Max. : 2.1090871 Max. : 2.8792429
#> y3
#> Min. :-2.4120953
#> 1st Qu.:-0.3471103
#> Median :-0.0001755
#> Mean :-0.0002761
#> 3rd Qu.: 0.3470153
#> Max. : 2.5320530
plot(sim)
Model Fitting
Prepare Initial Condition
dynr_initial <- dynr::prep.initial(
values.inistate = mu0,
params.inistate = c("mu0_1_1", "mu0_2_1", "mu0_3_1"),
values.inicov = sigma0,
params.inicov = matrix(
data = c(
"sigma0_1_1", "sigma0_2_1", "sigma0_3_1",
"sigma0_2_1", "sigma0_2_2", "sigma0_3_2",
"sigma0_3_1", "sigma0_3_2", "sigma0_3_3"
),
nrow = 3
)
)
Prepare Measurement Model
dynr_measurement <- dynr::prep.measurement(
values.load = diag(3),
params.load = matrix(data = "fixed", nrow = 3, ncol = 3),
state.names = c("eta_1", "eta_2", "eta_3"),
obs.names = c("y1", "y2", "y3")
)
Prepare Dynamic Process
dynr_dynamics <- dynr::prep.formulaDynamics(
formula = list(
eta_1 ~ alpha_1_1 * 1 + beta_1_1 * eta_1 + beta_1_2 * eta_2 + beta_1_3 * eta_3,
eta_2 ~ alpha_2_1 * 1 + beta_2_1 * eta_1 + beta_2_2 * eta_2 + beta_2_3 * eta_3,
eta_3 ~ alpha_3_1 * 1 + beta_3_1 * eta_1 + beta_3_2 * eta_2 + beta_3_3 * eta_3
),
startval = c(
alpha_1_1 = alpha[1], alpha_2_1 = alpha[2], alpha_3_1 = alpha[3],
beta_1_1 = beta[1, 1], beta_1_2 = beta[1, 2], beta_1_3 = beta[1, 3],
beta_2_1 = beta[2, 1], beta_2_2 = beta[2, 2], beta_2_3 = beta[2, 3],
beta_3_1 = beta[3, 1], beta_3_2 = beta[3, 2], beta_3_3 = beta[3, 3]
),
isContinuousTime = FALSE
)
Prepare Process Noise
dynr_noise <- dynr::prep.noise(
values.latent = psi,
params.latent = matrix(
data = c(
"psi_1_1", "psi_2_1", "psi_3_1",
"psi_2_1", "psi_2_2", "psi_3_2",
"psi_3_1", "psi_3_2", "psi_3_3"
),
nrow = 3
),
values.observed = matrix(data = 0, nrow = 3, ncol = 3),
params.observed = matrix(data = "fixed", nrow = 3, ncol = 3)
)
Prepare the Model
model <- dynr::dynr.model(
data = dynr_data,
initial = dynr_initial,
measurement = dynr_measurement,
dynamics = dynr_dynamics,
noise = dynr_noise,
outfile = "var.c"
)
Fit the Model
results <- dynr::dynr.cook(
model,
debug_flag = TRUE,
verbose = FALSE
)
#> [1] "Get ready!!!!"
#> using C compiler: βgcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0β
#> Optimization function called.
#> Starting Hessian calculation ...
#> Finished Hessian calculation.
#> Original exit flag: 3
#> Modified exit flag: 3
#> Optimization terminated successfully: ftol_rel or ftol_abs was reached.
#> Original fitted parameters: -0.0001394231 0.0002063081 -0.0003589877 0.6994004
#> 0.0003966713 0.000244815 0.4988629 0.5997508 -0.000859385 -0.1020317 0.3997827
#> 0.5003559 -2.304621 0.00113747 -0.001355358 -2.302905 -0.0003322207 -2.303592
#> -0.02658042 0.00959209 0.02274173 -1.629246 0.6477301 0.1786098 -1.305423
#> 0.5084412 -1.486772
#>
#> Transformed fitted parameters: -0.0001394231 0.0002063081 -0.0003589877
#> 0.6994004 0.0003966713 0.000244815 0.4988629 0.5997508 -0.000859385 -0.1020317
#> 0.3997827 0.5003559 0.09979666 0.0001135157 -0.0001352603 0.09996816
#> -3.336531e-05 0.09989952 -0.02658042 0.00959209 0.02274173 0.1960773 0.1270052
#> 0.03502133 0.353323 0.1605014 0.3024284
#>
#> Doing end processing
#> Successful trial
#> Total Time: 13.25697
#> Backend Time: 13.2568
Summary
summary(results)
#> Coefficients:
#> Estimate Std. Error t value ci.lower ci.upper Pr(>|t|)
#> alpha_1_1 -1.394e-04 3.161e-04 -0.441 -7.589e-04 4.800e-04 0.3296
#> alpha_2_1 2.063e-04 3.163e-04 0.652 -4.137e-04 8.263e-04 0.2571
#> alpha_3_1 -3.590e-04 3.162e-04 -1.135 -9.788e-04 2.608e-04 0.1281
#> beta_1_1 6.994e-01 8.071e-04 866.534 6.978e-01 7.010e-01 <2e-16 ***
#> beta_1_2 3.967e-04 6.787e-04 0.584 -9.336e-04 1.727e-03 0.2795
#> beta_1_3 2.448e-04 6.921e-04 0.354 -1.112e-03 1.601e-03 0.3618
#> beta_2_1 4.989e-01 8.077e-04 617.616 4.973e-01 5.004e-01 <2e-16 ***
#> beta_2_2 5.998e-01 6.794e-04 882.760 5.984e-01 6.011e-01 <2e-16 ***
#> beta_2_3 -8.594e-04 6.927e-04 -1.241 -2.217e-03 4.983e-04 0.1074
#> beta_3_1 -1.020e-01 8.074e-04 -126.370 -1.036e-01 -1.004e-01 <2e-16 ***
#> beta_3_2 3.998e-01 6.792e-04 588.613 3.985e-01 4.011e-01 <2e-16 ***
#> beta_3_3 5.004e-01 6.927e-04 722.373 4.990e-01 5.017e-01 <2e-16 ***
#> psi_1_1 9.980e-02 1.412e-04 706.780 9.952e-02 1.001e-01 <2e-16 ***
#> psi_2_1 1.135e-04 9.991e-05 1.136 -8.231e-05 3.093e-04 0.1280
#> psi_3_1 -1.353e-04 9.988e-05 -1.354 -3.310e-04 6.050e-05 0.0878 .
#> psi_2_2 9.997e-02 1.414e-04 706.782 9.969e-02 1.002e-01 <2e-16 ***
#> psi_3_2 -3.337e-05 9.996e-05 -0.334 -2.293e-04 1.625e-04 0.3693
#> psi_3_3 9.990e-02 1.413e-04 706.748 9.962e-02 1.002e-01 <2e-16 ***
#> mu0_1_1 -2.658e-02 1.399e-02 -1.901 -5.399e-02 8.298e-04 0.0287 *
#> mu0_2_1 9.592e-03 1.876e-02 0.511 -2.719e-02 4.637e-02 0.3046
#> mu0_3_1 2.274e-02 1.738e-02 1.309 -1.132e-02 5.680e-02 0.0953 .
#> sigma0_1_1 1.961e-01 8.756e-03 22.395 1.789e-01 2.132e-01 <2e-16 ***
#> sigma0_2_1 1.270e-01 9.301e-03 13.655 1.088e-01 1.452e-01 <2e-16 ***
#> sigma0_3_1 3.502e-02 7.817e-03 4.480 1.970e-02 5.034e-02 <2e-16 ***
#> sigma0_2_2 3.533e-01 1.594e-02 22.166 3.221e-01 3.846e-01 <2e-16 ***
#> sigma0_3_2 1.605e-01 1.153e-02 13.920 1.379e-01 1.831e-01 <2e-16 ***
#> sigma0_3_3 3.024e-01 1.361e-02 22.219 2.758e-01 3.291e-01 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log-likelihood value at convergence = 1605208.90
#> AIC = 1605262.90
#> BIC = 1605581.92
Parameter Estimates
alpha_hat
#> [1] -0.0001394231 0.0002063081 -0.0003589877
beta_hat
#> [,1] [,2] [,3]
#> [1,] 0.6994004 0.0003966713 0.000244815
#> [2,] 0.4988629 0.5997507880 -0.000859385
#> [3,] -0.1020317 0.3997826709 0.500355859
psi_hat
#> [,1] [,2] [,3]
#> [1,] 0.0997966649 1.135157e-04 -1.352603e-04
#> [2,] 0.0001135157 9.996816e-02 -3.336531e-05
#> [3,] -0.0001352603 -3.336531e-05 9.989952e-02
mu0_hat
#> [1] -0.02658042 0.00959209 0.02274173
sigma0_hat
#> [,1] [,2] [,3]
#> [1,] 0.19607732 0.1270052 0.03502133
#> [2,] 0.12700518 0.3533230 0.16050136
#> [3,] 0.03502133 0.1605014 0.30242838