Example 5: Composite Reliability
Ivan Jacob Agaloos Pesigan
2024-10-22
Source:vignettes/example-5-composite-reliability.Rmd
example-5-composite-reliability.Rmd
In this example, the Monte Carlo method is used to generate confidence intervals for composite reliability using the Holzinger and Swineford (1939) data set.
data(HolzingerSwineford1939, package = "lavaan")
The confirmatory factor analysis model for is given by
, , and are the latent factors. has three indicators , , and ; has three indicators , , and ; and has three indicators , , and . The variances of , , and are constrained to one.
Model Specification
Assuming that the latent variable variance is constrained to one, the omega total reliability coefficient is given by
where is the factor loading for item , is the residual variance for item , and is the number of items for a particular latent variable.
In the model specification below, the variances of the latent
variables eta1
, eta2
, and eta3
are constrained to one, all the relevant parameters are labeled
particularly the factor loadings and the error variances, and the omega
total reliability coefficient per latent variable are defined using the
:=
operator.
model <- "
# fix latent variable variances to 1
eta1 ~~ 1 * eta1
eta2 ~~ 1 * eta2
eta3 ~~ 1 * eta3
# factor loadings
eta1 =~ NA * x1 + l11 * x1 + l12 * x2 + l13 * x3
eta2 =~ NA * x4 + l24 * x4 + l25 * x5 + l26 * x6
eta3 =~ NA * x7 + l37 * x7 + l38 * x8 + l39 * x9
# error variances
x1 ~~ t1 * x1
x2 ~~ t2 * x2
x3 ~~ t3 * x3
x4 ~~ t4 * x4
x5 ~~ t5 * x5
x6 ~~ t6 * x6
x7 ~~ t7 * x7
x8 ~~ t8 * x8
x9 ~~ t9 * x9
# composite reliability
omega1 := (l11 + l12 + l13)^2 / ((l11 + l12 + l13)^2 + (t1 + t2 + t3))
omega2 := (l24 + l25 + l26)^2 / ((l24 + l25 + l26)^2 + (t4 + t5 + t6))
omega3 := (l37 + l38 + l39)^2 / ((l37 + l38 + l39)^2 + (t7 + t8 + t9))
"
Model Fitting
We can now fit the model using the cfa()
function from
lavaan
.
fit <- cfa(model = model, data = HolzingerSwineford1939)
Monte Carlo Confidence Intervals
The fit
lavaan
object can then be passed to
the MC()
function to generate Monte Carlo confidence
intervals.
MC(fit, R = 20000L, alpha = 0.05)
#> Monte Carlo Confidence Intervals
#> est se R 2.5% 97.5%
#> eta1~~eta1 1.0000 0.0000 20000 1.0000 1.0000
#> eta2~~eta2 1.0000 0.0000 20000 1.0000 1.0000
#> eta3~~eta3 1.0000 0.0000 20000 1.0000 1.0000
#> l11 0.8996 0.0807 20000 0.7420 1.0572
#> l12 0.4979 0.0770 20000 0.3471 0.6503
#> l13 0.6562 0.0746 20000 0.5085 0.8041
#> l24 0.9897 0.0564 20000 0.8795 1.0994
#> l25 1.1016 0.0629 20000 0.9781 1.2245
#> l26 0.9166 0.0537 20000 0.8109 1.0210
#> l37 0.6195 0.0693 20000 0.4831 0.7551
#> l38 0.7309 0.0652 20000 0.6035 0.8589
#> l39 0.6700 0.0654 20000 0.5434 0.7989
#> t1 0.5491 0.1141 20000 0.3253 0.7741
#> t2 1.1338 0.1032 20000 0.9319 1.3375
#> t3 0.8443 0.0913 20000 0.6648 1.0231
#> t4 0.3712 0.0478 20000 0.2768 0.4644
#> t5 0.4463 0.0584 20000 0.3315 0.5611
#> t6 0.3562 0.0428 20000 0.2724 0.4395
#> t7 0.7994 0.0817 20000 0.6402 0.9561
#> t8 0.4877 0.0737 20000 0.3438 0.6328
#> t9 0.5661 0.0709 20000 0.4241 0.7042
#> eta1~~eta2 0.4585 0.0641 20000 0.3331 0.5850
#> eta1~~eta3 0.4705 0.0728 20000 0.3270 0.6131
#> eta2~~eta3 0.2830 0.0693 20000 0.1475 0.4186
#> omega1 0.6253 0.0363 20000 0.5491 0.6912
#> omega2 0.8852 0.0116 20000 0.8600 0.9058
#> omega3 0.6878 0.0311 20000 0.6215 0.7437