Skip to contents

In this example, the Monte Carlo method is used to generate confidence intervals for composite reliability using the Holzinger and Swineford (1939) data set.

data(HolzingerSwineford1939, package = "lavaan")

The confirmatory factor analysis model for X1,,X9X_{1}, \dots, X_{9} is given by

Three-Factor Confirmatory Factor Analysis Model
Three-Factor Confirmatory Factor Analysis Model

η1\eta_{1}, η2\eta_{2}, and η3\eta_{3} are the latent factors. η1\eta_{1} has three indicators X1X_{1}, X2X_{2}, and X3X_{3}; η2\eta_{2} has three indicators X4X_{4}, X5X_{5}, and X6X_{6}; and η3\eta_{3} has three indicators X7X_{7}, X8X_{8}, and X9X_{9} . The variances of η1\eta_{1}, η2\eta_{2}, and η3\eta_{3} are constrained to one.

Model Specification

Assuming that the latent variable variance is constrained to one, the omega total reliability coefficient is given by

ωtotal=(i=1kλi)2(i=1kλi)2+i=1kθεii \omega_{\mathrm{total}} = \frac{ \left( \sum_{i = 1}^{k} \lambda_{i} \right)^2 }{ \left( \sum_{i = 1}^{k} \lambda_{i} \right)^2 + \sum_{i = 1}^{k} \theta_{\varepsilon_{ii}} }

where λi\lambda_{i} is the factor loading for item ii, θεii\theta_{\varepsilon_{ii}} is the residual variance for item ii, and kk is the number of items for a particular latent variable.

In the model specification below, the variances of the latent variables eta1, eta2, and eta3 are constrained to one, all the relevant parameters are labeled particularly the factor loadings and the error variances, and the omega total reliability coefficient per latent variable are defined using the := operator.

model <- "
  # fix latent variable variances to 1
  eta1 ~~ 1 * eta1
  eta2 ~~ 1 * eta2
  eta3 ~~ 1 * eta3
  # factor loadings
  eta1 =~ NA * x1 + l11 * x1 + l12 * x2 + l13 * x3
  eta2 =~ NA * x4 + l24 * x4 + l25 * x5 + l26 * x6
  eta3 =~ NA * x7 + l37 * x7 + l38 * x8 + l39 * x9
  # error variances
  x1 ~~ t1 * x1
  x2 ~~ t2 * x2
  x3 ~~ t3 * x3
  x4 ~~ t4 * x4
  x5 ~~ t5 * x5
  x6 ~~ t6 * x6
  x7 ~~ t7 * x7
  x8 ~~ t8 * x8
  x9 ~~ t9 * x9
  # composite reliability
  omega1 := (l11 + l12 + l13)^2 / ((l11 + l12 + l13)^2 + (t1 + t2 + t3))
  omega2 := (l24 + l25 + l26)^2 / ((l24 + l25 + l26)^2 + (t4 + t5 + t6))
  omega3 := (l37 + l38 + l39)^2 / ((l37 + l38 + l39)^2 + (t7 + t8 + t9))
"

Model Fitting

We can now fit the model using the cfa() function from lavaan.

fit <- cfa(model = model, data = HolzingerSwineford1939)

Monte Carlo Confidence Intervals

The fit lavaan object can then be passed to the MC() function to generate Monte Carlo confidence intervals.

MC(fit, R = 20000L, alpha = 0.05)
#> Monte Carlo Confidence Intervals
#>               est     se     R   2.5%  97.5%
#> eta1~~eta1 1.0000 0.0000 20000 1.0000 1.0000
#> eta2~~eta2 1.0000 0.0000 20000 1.0000 1.0000
#> eta3~~eta3 1.0000 0.0000 20000 1.0000 1.0000
#> l11        0.8996 0.0807 20000 0.7420 1.0572
#> l12        0.4979 0.0770 20000 0.3471 0.6503
#> l13        0.6562 0.0746 20000 0.5085 0.8041
#> l24        0.9897 0.0564 20000 0.8795 1.0994
#> l25        1.1016 0.0629 20000 0.9781 1.2245
#> l26        0.9166 0.0537 20000 0.8109 1.0210
#> l37        0.6195 0.0693 20000 0.4831 0.7551
#> l38        0.7309 0.0652 20000 0.6035 0.8589
#> l39        0.6700 0.0654 20000 0.5434 0.7989
#> t1         0.5491 0.1141 20000 0.3253 0.7741
#> t2         1.1338 0.1032 20000 0.9319 1.3375
#> t3         0.8443 0.0913 20000 0.6648 1.0231
#> t4         0.3712 0.0478 20000 0.2768 0.4644
#> t5         0.4463 0.0584 20000 0.3315 0.5611
#> t6         0.3562 0.0428 20000 0.2724 0.4395
#> t7         0.7994 0.0817 20000 0.6402 0.9561
#> t8         0.4877 0.0737 20000 0.3438 0.6328
#> t9         0.5661 0.0709 20000 0.4241 0.7042
#> eta1~~eta2 0.4585 0.0641 20000 0.3331 0.5850
#> eta1~~eta3 0.4705 0.0728 20000 0.3270 0.6131
#> eta2~~eta3 0.2830 0.0693 20000 0.1475 0.4186
#> omega1     0.6253 0.0363 20000 0.5491 0.6912
#> omega2     0.8852 0.0116 20000 0.8600 0.9058
#> omega3     0.6878 0.0311 20000 0.6215 0.7437

References

Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods, 56(3), 1678–1696. https://doi.org/10.3758/s13428-023-02114-4