Benchmark: Comparing the Monte Carlo Method with Nonparametric Bootstrapping (MI)
Ivan Jacob Agaloos Pesigan
2024-10-22
Source:vignettes/benchmark-mi.Rmd
benchmark-mi.Rmd
We compare the Monte Carlo (MC) method with nonparametric bootstrapping (NB) using the simple mediation model with missing data using multiple imputation. One advantage of MC over NB is speed. This is because the model is only fitted once in MC whereas it is fitted many times in NB.
Data
n <- 1000
a <- 0.50
b <- 0.50
cp <- 0.25
s2_em <- 1 - a^2
s2_ey <- 1 - cp^2 - a^2 * b^2 - b^2 * s2_em - 2 * cp * a * b
em <- rnorm(n = n, mean = 0, sd = sqrt(s2_em))
ey <- rnorm(n = n, mean = 0, sd = sqrt(s2_ey))
X <- rnorm(n = n)
M <- a * X + em
Y <- cp * X + b * M + ey
df <- data.frame(X, M, Y)
# Create data set with missing values.
miss <- sample(1:dim(df)[1], 300)
df[miss[1:100], "X"] <- NA
df[miss[101:200], "M"] <- NA
df[miss[201:300], "Y"] <- NA
Multiple Imputation
Perform the appropriate multiple imputation approach to deal with missing values. In this example, we impute multivariate missing data under the normal model.
mi <- amelia(
x = df,
m = 5L,
p2s = 0
)
Model Specification
The indirect effect is defined by the product of the slopes of paths
X
to M
labeled as a
and
M
to Y
labeled as b
. In this
example, we are interested in the confidence intervals of
indirect
defined as the product of a
and
b
using the :=
operator in the
lavaan
model syntax.
model <- "
Y ~ cp * X + b * M
M ~ a * X
X ~~ X
indirect := a * b
direct := cp
total := cp + (a * b)
"
Model Fitting
We can now fit the model using the sem()
function from
lavaan
. We do not need to deal with missing values in this
stage.
fit <- sem(data = df, model = model)
Monte Carlo Confidence Intervals (Multiple Imputation)
The fit
lavaan
object and mi
mids
object can then be passed to the MCMI()
function from semmcci
to generate Monte Carlo confidence
intervals using multiple imputation as described in Pesigan and Cheung
(2023).
MCMI(fit, R = 100L, alpha = 0.05, mi = mi)
#> Monte Carlo Confidence Intervals (Multiple Imputation Estimates)
#> est se R 2.5% 97.5%
#> cp 0.2274 0.0303 100 0.1761 0.2971
#> b 0.5192 0.0332 100 0.4510 0.5769
#> a 0.4790 0.0292 100 0.4202 0.5305
#> X~~X 1.0613 0.0441 100 0.9796 1.1444
#> Y~~Y 0.5439 0.0241 100 0.4994 0.5876
#> M~~M 0.7642 0.0396 100 0.7030 0.8402
#> indirect 0.2486 0.0173 100 0.2160 0.2747
#> direct 0.2274 0.0303 100 0.1761 0.2971
#> total 0.4760 0.0291 100 0.4271 0.5509
Nonparametric Bootstrap Confidence Intervals (Multiple Imputation)
Nonparametric bootstrap confidence intervals can be generated in
bmemLavaan
using the following.
summary(
bmemLavaan::bmem(data = df, model = model, method = "mi", boot = 100L, m = 5L)
)
#>
#> Estimate method: multiple imputation
#> Sample size: 1000
#> Number of request bootstrap draws: 100
#> Number of successful bootstrap draws: 100
#> Type of confidence interval: perc
#>
#> Values of statistics:
#>
#> Value SE 2.5% 97.5%
#> chisq 0.000 0.000 0.000 0.000
#> GFI 1.000 0.000 1.000 1.000
#> AGFI 1.000 0.000 1.000 1.000
#> RMSEA 0.000 0.000 0.000 0.000
#> NFI 1.000 0.000 1.000 1.000
#> NNFI 1.000 0.000 1.000 1.000
#> CFI 1.000 0.000 1.000 1.000
#> BIC 7742.967 81.777 7575.258 7857.675
#> SRMR 0.000 0.000 0.000 0.000
#>
#> Estimation of parameters:
#>
#> Estimate SE 2.5% 97.5%
#> Regressions:
#> Y ~
#> X (cp) 0.234 0.030 0.176 0.296
#> M (b) 0.513 0.032 0.460 0.570
#> M ~
#> X (a) 0.476 0.030 0.426 0.540
#>
#> Variances:
#> X 1.057 0.046 0.950 1.144
#> Y 0.556 0.027 0.488 0.600
#> M 0.755 0.035 0.684 0.813
#>
#>
#>
#> Defined parameters:
#> a*b (indr) 0.244 0.020 0.206 0.285
#> cp (drct) 0.234 0.030 0.176 0.296
#> cp+(*) (totl) 0.479 0.030 0.428 0.539
Benchmark
benchmark_mi_01 <- microbenchmark(
MC = {
fit <- sem(
data = df,
model = model
)
mi <- Amelia::amelia(
x = df,
m = m,
p2s = 0
)
MCMI(
fit,
R = R,
decomposition = "chol",
pd = FALSE,
mi = mi
)
},
NB = bmemLavaan::bmem(
data = df,
model = model,
method = "mi",
boot = B,
m = m
),
times = 10
)
Summary of Benchmark Results
summary(benchmark_mi_01, unit = "ms")
#> expr min lq mean median uq max neval
#> 1 MC 357.7178 369.8743 392.1105 373.3804 374.9043 580.4906 10
#> 2 NB 35608.5881 35675.6870 39860.3487 36334.5583 42444.1272 49886.7982 10
Summary of Benchmark Results Relative to the Faster Method
summary(benchmark_mi_01, unit = "relative")
#> expr min lq mean median uq max neval
#> 1 MC 1.00000 1.00000 1.0000 1.00000 1.0000 1.00000 10
#> 2 NB 99.54379 96.45355 101.6559 97.31245 113.2132 85.93902 10
Benchmark - Monte Carlo Method with Precalculated Estimates and Multiple Imputation
fit <- sem(
data = df,
model = model
)
mi <- Amelia::amelia(
x = df,
m = m,
p2s = 0
)
benchmark_mi_02 <- microbenchmark(
MC = MCMI(
fit,
R = R,
decomposition = "chol",
pd = FALSE,
mi = mi
),
NB = bmemLavaan::bmem(
data = df,
model = model,
method = "mi",
boot = B,
m = m
),
times = 10
)
Summary of Benchmark Results
summary(benchmark_mi_02, unit = "ms")
#> expr min lq mean median uq max neval
#> 1 MC 236.7124 241.3807 313.8474 247.8928 422.3154 423.4957 10
#> 2 NB 35447.8084 40962.4077 46805.9772 48673.6985 53452.4033 53530.8860 10
Summary of Benchmark Results Relative to the Faster Method
summary(benchmark_mi_02, unit = "relative")
#> expr min lq mean median uq max neval
#> 1 MC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10
#> 2 NB 149.7506 169.7004 149.1361 196.3498 126.5699 126.4024 10