Skip to contents

We compare the Monte Carlo (MC) method with nonparametric bootstrapping (NB) using the simple mediation model with missing data using multiple imputation. One advantage of MC over NB is speed. This is because the model is only fitted once in MC whereas it is fitted many times in NB.

Data

n <- 1000
a <- 0.50
b <- 0.50
cp <- 0.25
s2_em <- 1 - a^2
s2_ey <- 1 - cp^2 - a^2 * b^2 - b^2 * s2_em - 2 * cp * a * b
em <- rnorm(n = n, mean = 0, sd = sqrt(s2_em))
ey <- rnorm(n = n, mean = 0, sd = sqrt(s2_ey))
X <- rnorm(n = n)
M <- a * X + em
Y <- cp * X + b * M + ey
df <- data.frame(X, M, Y)

# Create data set with missing values.

miss <- sample(1:dim(df)[1], 300)
df[miss[1:100], "X"] <- NA
df[miss[101:200], "M"] <- NA
df[miss[201:300], "Y"] <- NA

Multiple Imputation

Perform the appropriate multiple imputation approach to deal with missing values. In this example, we impute multivariate missing data under the normal model.

mi <- amelia(
  x = df,
  m = 5L,
  p2s = 0
)

Model Specification

The indirect effect is defined by the product of the slopes of paths X to M labeled as a and M to Y labeled as b. In this example, we are interested in the confidence intervals of indirect defined as the product of a and b using the := operator in the lavaan model syntax.

model <- "
  Y ~ cp * X + b * M
  M ~ a * X
  X ~~ X
  indirect := a * b
  direct := cp
  total := cp + (a * b)
"

Model Fitting

We can now fit the model using the sem() function from lavaan. We do not need to deal with missing values in this stage.

fit <- sem(data = df, model = model)

Monte Carlo Confidence Intervals (Multiple Imputation)

The fit lavaan object and mi mids object can then be passed to the MCMI() function from semmcci to generate Monte Carlo confidence intervals using multiple imputation as described in Pesigan and Cheung (2024).

MCMI(fit, R = 100L, alpha = 0.05, mi = mi)
#> Monte Carlo Confidence Intervals (Multiple Imputation Estimates)
#>             est     se   R   2.5%  97.5%
#> cp       0.2274 0.0295 100 0.1787 0.2818
#> b        0.5192 0.0342 100 0.4534 0.5839
#> a        0.4790 0.0281 100 0.4249 0.5266
#> X~~X     1.0613 0.0443 100 0.9775 1.1328
#> Y~~Y     0.5439 0.0244 100 0.5010 0.5911
#> M~~M     0.7642 0.0397 100 0.7048 0.8397
#> indirect 0.2486 0.0189 100 0.2103 0.2755
#> direct   0.2274 0.0295 100 0.1787 0.2818
#> total    0.4760 0.0288 100 0.4243 0.5329

Nonparametric Bootstrap Confidence Intervals (Multiple Imputation)

Nonparametric bootstrap confidence intervals can be generated in bmemLavaan using the following.

summary(
  bmemLavaan::bmem(data = df, model = model, method = "mi", boot = 100L, m = 5L)
)
#> 
#> Estimate method:                          multiple imputation
#> Sample size:                              1000      
#> Number of request bootstrap draws:        100       
#> Number of successful bootstrap draws:     100       
#> Type of confidence interval:              perc
#> 
#> Values of statistics:
#> 
#>                      Value      SE      2.5%     97.5%
#>   chisq               0.000    0.000    0.000    0.000   
#>   GFI                 1.000    0.000    1.000    1.000   
#>   AGFI                1.000    0.000    1.000    1.000   
#>   RMSEA               0.000    0.000    0.000    0.000   
#>   NFI                 1.000    0.000    1.000    1.000   
#>   NNFI                1.000    0.000    1.000    1.000   
#>   CFI                 1.000    0.000    1.000    1.000   
#>   BIC                 7742.967 81.777   7575.258 7857.675
#>   SRMR                0.000    0.000    0.000    0.000   
#> 
#> Estimation of parameters:
#> 
#>                      Estimate   SE      2.5%     97.5%
#> Regressions:
#>   Y ~
#>     X        (cp)     0.234    0.030    0.176    0.296
#>     M         (b)     0.513    0.032    0.460    0.570
#>   M ~
#>     X         (a)     0.476    0.030    0.426    0.540
#> 
#> Variances:
#>     X                 1.057    0.046    0.950    1.144
#>     Y                 0.556    0.027    0.488    0.600
#>     M                 0.755    0.035    0.684    0.813
#> 
#> 
#> 
#> Defined parameters:
#>     a*b    (indr)     0.244    0.020    0.206    0.285
#>     cp     (drct)     0.234    0.030    0.176    0.296
#>     cp+(*) (totl)     0.479    0.030    0.428    0.539

Benchmark

Arguments

Variables Values Notes
R 100 Number of Monte Carlo replications.
B 100 Number of bootstrap samples.
m 5 Number of imputations.

Benchmark

benchmark_mi_01 <- microbenchmark(
  MC = {
    fit <- sem(
      data = df,
      model = model
    )
    mi <- Amelia::amelia(
      x = df,
      m = m,
      p2s = 0
    )
    MCMI(
      fit,
      R = R,
      decomposition = "chol",
      pd = FALSE,
      mi = mi
    )
  },
  NB = bmemLavaan::bmem(
    data = df,
    model = model,
    method = "mi",
    boot = B,
    m = m
  ),
  times = 10
)

Summary of Benchmark Results

summary(benchmark_mi_01, unit = "ms")
#>   expr        min         lq       mean     median         uq        max neval
#> 1   MC   323.9427   330.8432   334.7035   332.8629   336.8628   354.5615    10
#> 2   NB 31060.0216 31177.9692 31271.3612 31229.8614 31333.7710 31534.5442    10

Summary of Benchmark Results Relative to the Faster Method

summary(benchmark_mi_01, unit = "relative")
#>   expr      min       lq     mean median       uq      max neval
#> 1   MC  1.00000  1.00000  1.00000  1.000  1.00000  1.00000    10
#> 2   NB 95.88123 94.23791 93.43005 93.822 93.01642 88.93957    10

Plot

Benchmark - Monte Carlo Method with Precalculated Estimates and Multiple Imputation

fit <- sem(
  data = df,
  model = model
)
mi <- Amelia::amelia(
  x = df,
  m = m,
  p2s = 0
)
benchmark_mi_02 <- microbenchmark(
  MC = MCMI(
    fit,
    R = R,
    decomposition = "chol",
    pd = FALSE,
    mi = mi
  ),
  NB = bmemLavaan::bmem(
    data = df,
    model = model,
    method = "mi",
    boot = B,
    m = m
  ),
  times = 10
)

Summary of Benchmark Results

summary(benchmark_mi_02, unit = "ms")
#>   expr        min        lq       mean     median         uq        max neval
#> 1   MC   230.0875   235.618   257.2429   237.8043   244.8887   421.4892    10
#> 2   NB 30046.5756 30281.851 30532.2754 30478.7345 30647.8955 31290.6019    10

Summary of Benchmark Results Relative to the Faster Method

summary(benchmark_mi_02, unit = "relative")
#>   expr      min       lq     mean   median       uq     max neval
#> 1   MC   1.0000   1.0000   1.0000   1.0000   1.0000  1.0000    10
#> 2   NB 130.5876 128.5209 118.6905 128.1673 125.1503 74.2382    10

Plot

References

Pesigan, I. J. A., & Cheung, S. F. (2024). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods, 56(3), 1678–1696. https://doi.org/10.3758/s13428-023-02114-4