Benchmark: Comparing the Monte Carlo Method with Nonparametric Bootstrapping (FIML)
Ivan Jacob Agaloos Pesigan
2025-07-22
Source:vignettes/benchmark-fiml.Rmd
benchmark-fiml.Rmd
We compare the Monte Carlo (MC) method with nonparametric bootstrapping (NB) using the simple mediation model with missing data using full-information maximum likelihood. One advantage of MC over NB is speed. This is because the model is only fitted once in MC whereas it is fitted many times in NB.
Data
n <- 1000
a <- 0.50
b <- 0.50
cp <- 0.25
s2_em <- 1 - a^2
s2_ey <- 1 - cp^2 - a^2 * b^2 - b^2 * s2_em - 2 * cp * a * b
em <- rnorm(n = n, mean = 0, sd = sqrt(s2_em))
ey <- rnorm(n = n, mean = 0, sd = sqrt(s2_ey))
X <- rnorm(n = n)
M <- a * X + em
Y <- cp * X + b * M + ey
df <- data.frame(X, M, Y)
# Create data set with missing values.
miss <- sample(1:dim(df)[1], 300)
df[miss[1:100], "X"] <- NA
df[miss[101:200], "M"] <- NA
df[miss[201:300], "Y"] <- NA
Model Specification
The indirect effect is defined by the product of the slopes of paths
X
to M
labeled as a
and
M
to Y
labeled as b
. In this
example, we are interested in the confidence intervals of
indirect
defined as the product of a
and
b
using the :=
operator in the
lavaan
model syntax.
model <- "
Y ~ cp * X + b * M
M ~ a * X
X ~~ X
indirect := a * b
direct := cp
total := cp + (a * b)
"
Model Fitting
We can now fit the model using the sem()
function from
lavaan
. We are using missing = "fiml"
to
handle missing data in lavaan
.
fit <- sem(data = df, model = model)
Monte Carlo Confidence Intervals
The fit
lavaan
object can then be passed to
the MC()
function from semmcci
to generate
Monte Carlo confidence intervals.
MC(fit, R = 100L, alpha = 0.05)
#> Monte Carlo Confidence Intervals
#> est se R 2.5% 97.5%
#> cp 0.2419 0.0332 100 0.1792 0.3070
#> b 0.5166 0.0308 100 0.4580 0.5785
#> a 0.4989 0.0319 100 0.4448 0.5615
#> X~~X 1.0951 0.0621 100 0.9856 1.2026
#> Y~~Y 0.5796 0.0307 100 0.5257 0.6413
#> M~~M 0.8045 0.0464 100 0.7325 0.9106
#> indirect 0.2577 0.0210 100 0.2234 0.3031
#> direct 0.2419 0.0332 100 0.1792 0.3070
#> total 0.4996 0.0322 100 0.4550 0.5681
Nonparametric Bootstrap Confidence Intervals
Nonparametric bootstrap confidence intervals can be generated in
lavaan
using the following.
parameterEstimates(
sem(
data = df,
model = model,
missing = "fiml",
se = "bootstrap",
bootstrap = 100L
)
)
#> lhs op rhs label est se z pvalue ci.lower ci.upper
#> 1 Y ~ X cp 0.234 0.030 7.721 0.000 0.169 0.287
#> 2 Y ~ M b 0.511 0.035 14.704 0.000 0.442 0.585
#> 3 M ~ X a 0.481 0.028 17.117 0.000 0.425 0.532
#> 4 X ~~ X 1.059 0.049 21.539 0.000 0.979 1.148
#> 5 Y ~~ Y 0.554 0.029 19.264 0.000 0.490 0.607
#> 6 M ~~ M 0.756 0.032 23.389 0.000 0.693 0.820
#> 7 Y ~1 -0.013 0.027 -0.473 0.636 -0.065 0.056
#> 8 M ~1 -0.022 0.030 -0.744 0.457 -0.077 0.044
#> 9 X ~1 0.002 0.036 0.069 0.945 -0.072 0.074
#> 10 indirect := a*b indirect 0.246 0.021 11.476 0.000 0.202 0.286
#> 11 direct := cp direct 0.234 0.030 7.682 0.000 0.169 0.287
#> 12 total := cp+(a*b) total 0.479 0.030 16.001 0.000 0.417 0.547
Benchmark
Arguments
Variables | Values | Notes |
---|---|---|
R | 1000 | Number of Monte Carlo replications. |
B | 1000 | Number of bootstrap samples. |
benchmark_fiml_01 <- microbenchmark(
MC = {
fit <- sem(
data = df,
model = model,
missing = "fiml"
)
MC(
fit,
R = R,
decomposition = "chol",
pd = FALSE
)
},
NB = sem(
data = df,
model = model,
missing = "fiml",
se = "bootstrap",
bootstrap = B
),
times = 10
)
Summary of Benchmark Results
summary(benchmark_fiml_01, unit = "ms")
#> expr min lq mean median uq max neval
#> 1 MC 106.5657 107.333 109.2974 108.5297 111.7913 113.4185 10
#> 2 NB 46897.5716 47470.718 47936.1980 47855.8885 48482.9339 48959.5930 10
Summary of Benchmark Results Relative to the Faster Method
summary(benchmark_fiml_01, unit = "relative")
#> expr min lq mean median uq max neval
#> 1 MC 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 10
#> 2 NB 440.0815 442.275 438.5848 440.9474 433.6916 431.6722 10
Benchmark - Monte Carlo Method with Precalculated Estimates
fit <- sem(
data = df,
model = model,
missing = "fiml"
)
benchmark_fiml_02 <- microbenchmark(
MC = MC(
fit,
R = R,
decomposition = "chol",
pd = FALSE
),
NB = sem(
data = df,
model = model,
missing = "fiml",
se = "bootstrap",
bootstrap = B
),
times = 10
)
Summary of Benchmark Results
summary(benchmark_fiml_02, unit = "ms")
#> expr min lq mean median uq max
#> 1 MC 19.12036 20.06588 21.29987 20.41911 23.00196 24.2131
#> 2 NB 47174.69427 47190.17818 47779.39203 47463.06558 48740.24230 48910.4056
#> neval
#> 1 10
#> 2 10
Summary of Benchmark Results Relative to the Faster Method
summary(benchmark_fiml_02, unit = "relative")
#> expr min lq mean median uq max neval
#> 1 MC 1.000 1.000 1.000 1.000 1.00 1.000 10
#> 2 NB 2467.249 2351.762 2243.178 2324.444 2118.96 2019.998 10