Skip to contents

We compare the Monte Carlo (MC) method with nonparametric bootstrapping (NB) using the simple mediation model with complete data. One advantage of MC over NB is speed. This is because the model is only fitted once in MC whereas it is fitted many times in NB.

Data

n <- 1000
a <- 0.50
b <- 0.50
cp <- 0.25
s2_em <- 1 - a^2
s2_ey <- 1 - cp^2 - a^2 * b^2 - b^2 * s2_em - 2 * cp * a * b
em <- rnorm(n = n, mean = 0, sd = sqrt(s2_em))
ey <- rnorm(n = n, mean = 0, sd = sqrt(s2_ey))
X <- rnorm(n = n)
M <- a * X + em
Y <- cp * X + b * M + ey
df <- data.frame(X, M, Y)

Model Specification

The indirect effect is defined by the product of the slopes of paths X to M labeled as a and M to Y labeled as b. In this example, we are interested in the confidence intervals of indirect defined as the product of a and b using the := operator in the lavaan model syntax.

model <- "
  Y ~ cp * X + b * M
  M ~ a * X
  X ~~ X
  indirect := a * b
  direct := cp
  total := cp + (a * b)
"

Model Fitting

We can now fit the model using the sem() function from lavaan.

fit <- sem(data = df, model = model)

Monte Carlo Confidence Intervals

The fit lavaan object can then be passed to the MC() function from semmcci to generate Monte Carlo confidence intervals.

MC(fit, R = 100L, alpha = 0.05)
#> Monte Carlo Confidence Intervals
#>             est     se   R   2.5%  97.5%
#> cp       0.2333 0.0296 100 0.1806 0.2903
#> b        0.5082 0.0279 100 0.4555 0.5527
#> a        0.4820 0.0280 100 0.4220 0.5301
#> X~~X     1.0590 0.0426 100 0.9751 1.1296
#> Y~~Y     0.5462 0.0231 100 0.5064 0.5959
#> M~~M     0.7527 0.0337 100 0.7024 0.8208
#> indirect 0.2449 0.0179 100 0.2058 0.2738
#> direct   0.2333 0.0296 100 0.1806 0.2903
#> total    0.4782 0.0295 100 0.4162 0.5283

Nonparametric Bootstrap Confidence Intervals

Nonparametric bootstrap confidence intervals can be generated in lavaan using the following.

parameterEstimates(
  sem(
    data = df,
    model = model,
    se = "bootstrap",
    bootstrap = 100L
  )
)
#>        lhs op      rhs    label   est    se      z pvalue ci.lower ci.upper
#> 1        Y  ~        X       cp 0.233 0.025  9.395      0    0.183    0.278
#> 2        Y  ~        M        b 0.508 0.028 18.057      0    0.454    0.568
#> 3        M  ~        X        a 0.482 0.026 18.550      0    0.433    0.535
#> 4        X ~~        X          1.059 0.046 23.224      0    0.969    1.161
#> 5        Y ~~        Y          0.546 0.023 23.640      0    0.508    0.593
#> 6        M ~~        M          0.753 0.033 23.131      0    0.692    0.814
#> 7 indirect :=      a*b indirect 0.245 0.020 12.381      0    0.209    0.289
#> 8   direct :=       cp   direct 0.233 0.025  9.348      0    0.183    0.278
#> 9    total := cp+(a*b)    total 0.478 0.027 17.876      0    0.418    0.518

Benchmark

Arguments

Variables Values Notes
R 1000 Number of Monte Carlo replications.
B 1000 Number of bootstrap samples.
benchmark_complete_01 <- microbenchmark(
  MC = {
    fit <- sem(
      data = df,
      model = model
    )
    MC(
      fit,
      R = R,
      decomposition = "chol",
      pd = FALSE
    )
  },
  NB = sem(
    data = df,
    model = model,
    se = "bootstrap",
    bootstrap = B
  ),
  times = 10
)

Summary of Benchmark Results

summary(benchmark_complete_01, unit = "ms")
#>   expr         min          lq        mean      median          uq         max
#> 1   MC    62.14825    64.53126    67.27993    66.10667    67.67751    82.28363
#> 2   NB 20076.49060 21097.11114 21056.66693 21199.09220 21257.40636 21546.92772
#>   neval
#> 1    10
#> 2    10

Summary of Benchmark Results Relative to the Faster Method

summary(benchmark_complete_01, unit = "relative")
#>   expr      min       lq    mean   median       uq      max neval
#> 1   MC   1.0000   1.0000   1.000   1.0000   1.0000   1.0000    10
#> 2   NB 323.0419 326.9286 312.971 320.6801 314.0985 261.8616    10

Plot

Benchmark - Monte Carlo Method with Precalculated Estimates

fit <- sem(
  data = df,
  model = model
)
benchmark_complete_02 <- microbenchmark(
  MC = MC(
    fit,
    R = R,
    decomposition = "chol",
    pd = FALSE
  ),
  NB = sem(
    data = df,
    model = model,
    se = "bootstrap",
    bootstrap = B
  ),
  times = 10
)

Summary of Benchmark Results

summary(benchmark_complete_02, unit = "ms")
#>   expr         min          lq        mean     median          uq         max
#> 1   MC    19.59999    19.89196    21.31238    21.5501    22.50735    23.00763
#> 2   NB 20503.10680 20530.37817 20776.18543 20687.2049 20828.37083 21718.77052
#>   neval
#> 1    10
#> 2    10

Summary of Benchmark Results Relative to the Faster Method

summary(benchmark_complete_02, unit = "relative")
#>   expr      min       lq     mean   median      uq      max neval
#> 1   MC    1.000    1.000   1.0000   1.0000   1.000   1.0000    10
#> 2   NB 1046.077 1032.094 974.8414 959.9589 925.403 943.9811    10

Plot

References

Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods, 56(3), 1678–1696. https://doi.org/10.3758/s13428-023-02114-4