Benchmark: Comparing the Monte Carlo Method with Nonparametric Bootstrapping
Ivan Jacob Agaloos Pesigan
2024-10-22
Source:vignettes/benchmark-complete.Rmd
benchmark-complete.Rmd
We compare the Monte Carlo (MC) method with nonparametric bootstrapping (NB) using the simple mediation model with complete data. One advantage of MC over NB is speed. This is because the model is only fitted once in MC whereas it is fitted many times in NB.
Model Specification
The indirect effect is defined by the product of the slopes of paths
X
to M
labeled as a
and
M
to Y
labeled as b
. In this
example, we are interested in the confidence intervals of
indirect
defined as the product of a
and
b
using the :=
operator in the
lavaan
model syntax.
model <- "
Y ~ cp * X + b * M
M ~ a * X
X ~~ X
indirect := a * b
direct := cp
total := cp + (a * b)
"
Model Fitting
We can now fit the model using the sem()
function from
lavaan
.
fit <- sem(data = df, model = model)
Monte Carlo Confidence Intervals
The fit
lavaan
object can then be passed to
the MC()
function from semmcci
to generate
Monte Carlo confidence intervals.
MC(fit, R = 100L, alpha = 0.05)
#> Monte Carlo Confidence Intervals
#> est se R 2.5% 97.5%
#> cp 0.2333 0.0296 100 0.1806 0.2903
#> b 0.5082 0.0279 100 0.4555 0.5527
#> a 0.4820 0.0280 100 0.4220 0.5301
#> X~~X 1.0590 0.0426 100 0.9883 1.1428
#> Y~~Y 0.5462 0.0231 100 0.5064 0.5959
#> M~~M 0.7527 0.0337 100 0.6846 0.8029
#> indirect 0.2449 0.0179 100 0.2058 0.2738
#> direct 0.2333 0.0296 100 0.1806 0.2903
#> total 0.4782 0.0295 100 0.4162 0.5283
Nonparametric Bootstrap Confidence Intervals
Nonparametric bootstrap confidence intervals can be generated in
lavaan
using the following.
parameterEstimates(
sem(
data = df,
model = model,
se = "bootstrap",
bootstrap = 100L
)
)
#> lhs op rhs label est se z pvalue ci.lower ci.upper
#> 1 Y ~ X cp 0.233 0.025 9.395 0 0.183 0.278
#> 2 Y ~ M b 0.508 0.028 18.057 0 0.454 0.568
#> 3 M ~ X a 0.482 0.026 18.550 0 0.433 0.535
#> 4 X ~~ X 1.059 0.046 23.224 0 0.969 1.161
#> 5 Y ~~ Y 0.546 0.023 23.640 0 0.508 0.593
#> 6 M ~~ M 0.753 0.033 23.131 0 0.692 0.814
#> 7 indirect := a*b indirect 0.245 0.020 12.381 0 0.209 0.289
#> 8 direct := cp direct 0.233 0.025 9.348 0 0.183 0.278
#> 9 total := cp+(a*b) total 0.478 0.027 17.876 0 0.418 0.518
Benchmark
Arguments
Variables | Values | Notes |
---|---|---|
R | 1000 | Number of Monte Carlo replications. |
B | 1000 | Number of bootstrap samples. |
benchmark_complete_01 <- microbenchmark(
MC = {
fit <- sem(
data = df,
model = model
)
MC(
fit,
R = R,
decomposition = "chol",
pd = FALSE
)
},
NB = sem(
data = df,
model = model,
se = "bootstrap",
bootstrap = B
),
times = 10
)
Summary of Benchmark Results
summary(benchmark_complete_01, unit = "ms")
#> expr min lq mean median uq max neval
#> 1 MC 120.6836 186.192 203.7261 215.5088 230.7458 257.3183 10
#> 2 NB 29515.6644 45558.542 56084.4064 50152.7194 70779.4403 76304.1979 10
Summary of Benchmark Results Relative to the Faster Method
summary(benchmark_complete_01, unit = "relative")
#> expr min lq mean median uq max neval
#> 1 MC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10
#> 2 NB 244.5707 244.6858 275.2932 232.7178 306.7421 296.5363 10
Benchmark - Monte Carlo Method with Precalculated Estimates
fit <- sem(
data = df,
model = model
)
benchmark_complete_02 <- microbenchmark(
MC = MC(
fit,
R = R,
decomposition = "chol",
pd = FALSE
),
NB = sem(
data = df,
model = model,
se = "bootstrap",
bootstrap = B
),
times = 10
)
Summary of Benchmark Results
summary(benchmark_complete_02, unit = "ms")
#> expr min lq mean median uq max
#> 1 MC 26.92053 31.71674 44.28055 47.78796 50.6716 63.41477
#> 2 NB 29200.31081 41337.92447 44233.31711 46074.02164 49510.4200 52418.48387
#> neval
#> 1 10
#> 2 10
Summary of Benchmark Results Relative to the Faster Method
summary(benchmark_complete_02, unit = "relative")
#> expr min lq mean median uq max neval
#> 1 MC 1.000 1.000 1.0000 1.0000 1.0000 1.0000 10
#> 2 NB 1084.685 1303.347 998.9334 964.1346 977.0842 826.5974 10