This function estimates
fixed-, random-, or mixed-effects meta-analysis parameters
using the estimated coefficients and sampling variance-covariance matrix
from each individual fitted using the
fitDTVARMxID::FitDTVARMxID() function.
Usage
MetaVARMx(
object,
x = NULL,
alpha_values = NULL,
alpha_free = NULL,
alpha_lbound = NULL,
alpha_ubound = NULL,
gamma_values = NULL,
gamma_free = NULL,
gamma_lbound = NULL,
gamma_ubound = NULL,
tau_sqr_d_free = NULL,
tau_sqr_d_values = NULL,
tau_sqr_d_lbound = NULL,
tau_sqr_d_ubound = NULL,
tau_sqr_l_free = NULL,
tau_sqr_l_values = NULL,
tau_sqr_l_lbound = NULL,
tau_sqr_l_ubound = NULL,
random = TRUE,
diag = FALSE,
effects = TRUE,
int_meas = FALSE,
int_dyn = FALSE,
cov_meas = FALSE,
cov_dyn = FALSE,
converged = TRUE,
grad_tol = 0.01,
hess_tol = 1e-08,
vanishing_theta = TRUE,
theta_tol = 0.001,
try = 1000,
ncores = NULL,
...
)Arguments
- object
Output of the
fitDTVARMxID::FitDTVARMxID()function.- x
An optional list. Each element of the list is a numeric vector of covariates for the mixed-effects model.
- alpha_values
Numeric vector. Optional vector of starting values for
alpha.- alpha_free
Logical vector. Optional vector of free (
TRUE) parameters foralpha.- alpha_lbound
Numeric vector. Optional vector of lower bound values for
alpha.- alpha_ubound
Numeric vector. Optional vector of upper bound values for
alpha.- gamma_values
Numeric matrix. Optional matrix of starting values for
gamma.- gamma_free
Logical matrix. Optional matrix of free (
TRUE) parameters forgamma.- gamma_lbound
Numeric matrix. Optional matrix of lower bound values for
gamma.- gamma_ubound
Numeric matrix. Optional matrix of upper bound values for
gamma.- tau_sqr_d_free
Logical vector indicating free/fixed status of the elements of
tau_sqr_d. IfNULL, all element oftau_sqr_dare free.- tau_sqr_d_values
Numeric vector with starting values for
tau_sqr_d. IfNULL, defaults to a vector of ones.- tau_sqr_d_lbound
Numeric vector with lower bounds for
tau_sqr_d. IfNULL, no lower bounds are set.- tau_sqr_d_ubound
Numeric vector with upper bounds for
tau_sqr_d. IfNULL, no upper bounds are set.- tau_sqr_l_free
Logical matrix indicating which strictly-lower-triangular elements of
tau_sqr_lare free. Ignored ifdiag = TRUE.- tau_sqr_l_values
Numeric matrix of starting values for the strictly-lower-triangular elements of
tau_sqr_l. IfNULL, defaults to a null matrix.- tau_sqr_l_lbound
Numeric matrix with lower bounds for
tau_sqr_l. IfNULL, no lower bounds are set.- tau_sqr_l_ubound
Numeric matrix with upper bounds for
tau_sqr_l. IfNULL, no upper bounds are set.- random
Logical. If
random = TRUE, estimates random effects. Ifrandom = FALSE,tau_sqris a null matrix.- diag
Logical. If
diag = TRUE,tau_sqris a diagonal matrix. Ifdiag = FALSE,tau_sqris a symmetric matrix.- effects
Logical. If
effects = TRUE, include estimates of the dynamic effects matrix, if available. Ifeffects = FALSE, exclude estimates of the dynamic effects matrix.- int_meas
Logical. If
int_meas = TRUE, include estimates of the measurement intercept vector, if available. Ifint_meas = FALSE, exclude estimates of the measurement intercept vector.- int_dyn
Logical. If
int_dyn = TRUE, include estimates of the dynamic process intercept vector, if available. Ifint_dyn = FALSE, exclude estimates of the dynamic process intercept vector.- cov_meas
Logical. If
cov_meas = TRUE, include estimates of the measurement error covariance matrix, if available. Ifcov_meas = FALSE, exclude estimates of the measurement error covariance matrix.- cov_dyn
Logical. If
cov_dyn = TRUE, include estimates of the process noise covariance matrix, if available. Ifcov_dyn = FALSE, exclude estimates of the process noise covariance matrix.- converged
Logical. Only include converged cases.
- grad_tol
Numeric scalar. Tolerance for the maximum absolute gradient if
converged = TRUE.- hess_tol
Numeric scalar. Tolerance for Hessian eigenvalues; eigenvalues must be strictly greater than this value if
converged = TRUE.- vanishing_theta
Logical. Test for measurement error variance going to zero if
converged = TRUE.- theta_tol
Numeric. Tolerance for vanishing theta test if
convergedandtheta_tolareTRUE.- try
Positive integer. Number of extra optimization tries.
- ncores
Positive integer. Number of cores to use.
- ...
Additional arguments to pass to
OpenMx::mxTryHard().
References
Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Wiley. doi:10.1002/9781118957813
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. doi:10.1007/s11336-014-9435-8
See also
Other Meta-Analysis of VAR Functions:
Meta()