This function estimates
fixed-, random-, or mixed-effects meta-analysis parameters
using the estimated coefficients and sampling variance-covariance matrix
from each individual fitted using the fitDTVARMx::FitDTVARIDMx()
or fitCTVARMx::FitCTVARIDMx()
functions.
Usage
MetaVARMx(
object,
x = NULL,
beta0_values = NULL,
beta0_free = NULL,
beta0_lbound = NULL,
beta0_ubound = NULL,
beta1_values = NULL,
beta1_free = NULL,
beta1_lbound = NULL,
beta1_ubound = NULL,
tau_values = NULL,
tau_free = NULL,
tau_lbound = NULL,
tau_ubound = NULL,
random = TRUE,
diag = FALSE,
intercept = FALSE,
noise = FALSE,
error = FALSE,
try = 1000,
ncores = NULL,
...
)
Arguments
- object
Output of the
fitDTVARMx::FitDTVARIDMx()
orfitCTVARMx::FitCTVARIDMx()
functions.- x
An optional list. Each element of the list is a numeric vector of covariates for the mixed-effects model.
- beta0_values
Numeric vector. Optional vector of starting values for
beta0
.- beta0_free
Logical vector. Optional vector of free (
TRUE
) parameters forbeta0
.- beta0_lbound
Numeric vector. Optional vector of lower bound values for
beta0
.- beta0_ubound
Numeric vector. Optional vector of upper bound values for
beta0
.- beta1_values
Numeric matrix. Optional matrix of starting values for
beta1
.- beta1_free
Logical matrix. Optional matrix of free (
TRUE
) parameters forbeta1
.- beta1_lbound
Numeric matrix. Optional matrix of lower bound values for
beta1
.- beta1_ubound
Numeric matrix. Optional matrix of upper bound values for
beta1
.- tau_values
Numeric matrix. Optional matrix of starting values for
t(chol(tau_sqr))
.- tau_free
Numeric matrix. Optional matrix of free (
TRUE
) parameters fort(chol(tau_sqr))
.- tau_lbound
Numeric matrix. Optional matrix of lower bound values for
t(chol(tau_sqr))
.- tau_ubound
Numeric matrix. Optional matrix of upper bound values for
t(chol(tau_sqr))
.- random
Logical. If
random = TRUE
, estimates random effects. Ifrandom = FALSE
,tau_sqr
is a null matrix.- diag
Logical. If
diag = TRUE
,tau_sqr
is a diagonal matrix. Ifdiag = FALSE
,tau_sqr
is a symmetric matrix.- intercept
Logical. If
intercept = TRUE
, include estimates of the process intercept vector, if available. Ifintercept = FALSE
, exclude estimates of the process intercept vector.- noise
Logical. If
noise = TRUE
, include estimates of the process noise matrix, if available. Ifnoise = FALSE
, exclude estimates of the process noise matrix.- error
Logical. If
error = TRUE
, include estimates of the measurement error matrix, if available. Iferror = FALSE
, exclude estimates of the measurement error matrix.- try
Positive integer. Number of extra optimization tries.
- ncores
Positive integer. Number of cores to use.
- ...
Additional optional arguments to pass to
mxTryHardctsem
.
References
Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Wiley. doi:10.1002/9781118957813
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. doi:10.1007/s11336-014-9435-8
See also
Other Meta-Analysis of VAR Functions:
Meta()
Examples
if (FALSE) { # \dontrun{
# Generate data using the simStateSpace package------------------------------
beta_mu <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5
),
nrow = 3
)
beta_sigma <- diag(3 * 3)
beta <- simStateSpace::SimBetaN(
n = 5,
beta = beta_mu,
vcov_beta_vec_l = t(chol(beta_sigma))
)
sim <- simStateSpace::SimSSMVARIVary(
n = 5,
time = 100,
mu0 = list(rep(x = 0, times = 3)),
sigma0_l = list(t(chol(diag(3)))),
alpha = list(rep(x = 0, times = 3)),
beta = beta,
psi_l = list(t(chol(diag(3))))
)
data <- as.data.frame(sim)
# Fit the model--------------------------------------------------------------
library(fitDTVARMx)
fit <- FitDTVARIDMx(
data = data,
observed = c("y1", "y2", "y3"),
id = "id"
)
# Multivariate meta-analysis-------------------------------------------------
library(metaVAR)
meta <- MetaVARMx(fit)
print(meta)
summary(meta)
coef(meta)
vcov(meta)
} # }