This function estimates
fixed-, random-, or mixed-effects meta-analysis parameters
using the estimated coefficients and sampling variance-covariance matrix
from each individual fitted using the
fitDTVARMxID::FitDTVARMxID() function.
Usage
MetaVARMx(
object,
x = NULL,
z = NULL,
random = TRUE,
alpha_free = NULL,
alpha_values = NULL,
alpha_lbound = NULL,
alpha_ubound = NULL,
tau_sqr_diag = FALSE,
tau_sqr_d_free = NULL,
tau_sqr_d_values = NULL,
tau_sqr_d_lbound = NULL,
tau_sqr_d_ubound = NULL,
tau_sqr_l_free = NULL,
tau_sqr_l_values = NULL,
tau_sqr_l_lbound = NULL,
tau_sqr_l_ubound = NULL,
i_sqr_univariate = FALSE,
gamma_free = NULL,
gamma_values = NULL,
gamma_lbound = NULL,
gamma_ubound = NULL,
kappa_free = NULL,
kappa_values = NULL,
kappa_lbound = NULL,
kappa_ubound = NULL,
phi_values = NULL,
phi_free = NULL,
phi_lbound = NULL,
phi_ubound = NULL,
omega_values = NULL,
omega_free = NULL,
omega_lbound = NULL,
omega_ubound = NULL,
psi_diag = TRUE,
psi_d_free = NULL,
psi_d_values = NULL,
psi_d_lbound = NULL,
psi_d_ubound = NULL,
psi_l_free = NULL,
psi_l_values = NULL,
psi_l_lbound = NULL,
psi_l_ubound = NULL,
check_estimates = TRUE,
effects = TRUE,
int_meas = FALSE,
int_dyn = FALSE,
cov_meas = FALSE,
cov_dyn = FALSE,
converged = TRUE,
vanishing_theta = TRUE,
theta_tol = 0.001,
robust_v = FALSE,
robust = FALSE,
tries_explore = 100,
tries_local = 100,
max_attempts = 10,
grad_tol = 0.01,
hess_tol = 1e-08,
eps = 1e-06,
factor = 10,
abs_bnd_tol = 1e-06,
rel_bnd_tol = 1e-04,
silent = FALSE,
seed = NULL,
ncores = NULL
)Arguments
- object
Output of the
fitDTVARMxID::FitDTVARMxID()function.- x
An optional list. Each element of the list is a numeric vector of covariates.
- z
An optional list. Each element of the list is a numeric vector of distal outcomes.
- random
Logical. If
random = TRUE, estimates random effects. Ifrandom = FALSE,tau_sqris a null matrix.- alpha_free
Logical vector. Optional vector of free (
TRUE) parameters foralpha.- alpha_values
Numeric vector. Optional vector of starting values for
alpha.- alpha_lbound
Numeric vector. Optional vector of lower bound values for
alpha.- alpha_ubound
Numeric vector. Optional vector of upper bound values for
alpha.- tau_sqr_diag
Logical. If
tau_sqr_diag = TRUE,tau_sqris a diagonal matrix. Iftau_sqr_diag = FALSE,tau_sqris a symmetric matrix.- tau_sqr_d_free
Logical vector indicating free/fixed status of the elements of
tau_sqr_d. IfNULL, all element oftau_sqr_dare free.- tau_sqr_d_values
Numeric vector with starting values for
tau_sqr_d. IfNULL, defaults to a vector of ones.- tau_sqr_d_lbound
Numeric vector with lower bounds for
tau_sqr_d. IfNULL, no lower bounds are set.- tau_sqr_d_ubound
Numeric vector with upper bounds for
tau_sqr_d. IfNULL, no upper bounds are set.- tau_sqr_l_free
Logical matrix indicating which strictly-lower-triangular elements of
tau_sqr_lare free. Ignored iftau_sqr_diag = TRUE.- tau_sqr_l_values
Numeric matrix of starting values for the strictly-lower-triangular elements of
tau_sqr_l. IfNULL, defaults to a null matrix.- tau_sqr_l_lbound
Numeric matrix with lower bounds for
tau_sqr_l. IfNULL, no lower bounds are set.- tau_sqr_l_ubound
Numeric matrix with upper bounds for
tau_sqr_l. IfNULL, no upper bounds are set.- i_sqr_univariate
Logical. If
i_sqr_univariate = TRUE, use the univariate formula for \(I^2\). Ifi_sqr_univariate = FALSE, use the multivariate formula for \(I^2\).- gamma_free
Logical matrix. Optional matrix of free (
TRUE) parameters forgamma.- gamma_values
Numeric matrix. Optional matrix of starting values for
gamma.- gamma_lbound
Numeric matrix. Optional matrix of lower bound values for
gamma.- gamma_ubound
Numeric matrix. Optional matrix of upper bound values for
gamma.- kappa_free
Logical vector. Optional vector of free (
TRUE) parameters forkappa.- kappa_values
Numeric vector. Optional vector of starting values for
kappa.- kappa_lbound
Numeric vector. Optional vector of lower bound values for
kappa.- kappa_ubound
Numeric vector. Optional vector of upper bound values for
kappa.- phi_values
Numeric matrix. Optional matrix of starting values for
phi.- phi_free
Logical matrix. Optional matrix of free (
TRUE) parameters forphi.- phi_lbound
Numeric matrix. Optional matrix of lower bound values for
phi.- phi_ubound
Numeric matrix. Optional matrix of upper bound values for
phi.- omega_values
Numeric matrix. Optional matrix of starting values for
omega.- omega_free
Logical matrix. Optional matrix of free (
TRUE) parameters foromega.- omega_lbound
Numeric matrix. Optional matrix of lower bound values for
omega.- omega_ubound
Numeric matrix. Optional matrix of upper bound values for
omega.- psi_diag
Logical. If
psi_diag = TRUE,psiis a diagonal matrix. Ifpsi_diag = FALSE,psiis a symmetric matrix.- psi_d_free
Logical vector indicating free/fixed status of the elements of
psi_d. IfNULL, all element ofpsi_dare free.- psi_d_values
Numeric vector with starting values for
psi_d. IfNULL, defaults to a vector of ones.- psi_d_lbound
Numeric vector with lower bounds for
psi_d. IfNULL, no lower bounds are set.- psi_d_ubound
Numeric vector with upper bounds for
psi_d. IfNULL, no upper bounds are set.- psi_l_free
Logical matrix indicating which strictly-lower-triangular elements of
psi_lare free. Ignored ifpsi_diag = TRUE.- psi_l_values
Numeric matrix of starting values for the strictly-lower-triangular elements of
psi_l. IfNULL, defaults to a null matrix.- psi_l_lbound
Numeric matrix with lower bounds for
psi_l. IfNULL, no lower bounds are set.- psi_l_ubound
Numeric matrix with upper bounds for
psi_l. IfNULL, no upper bounds are set.- check_estimates
Logical. Check elements of
vfor positive definiteness. If the test fails, the function generates a near positive definite matrix to replace the original usingMatrix::nearPD().- effects
Logical. If
effects = TRUE, include estimates of the dynamic effects matrix, if available. Ifeffects = FALSE, exclude estimates of the dynamic effects matrix.- int_meas
Logical. If
int_meas = TRUE, include estimates of the measurement intercept vector, if available. Ifint_meas = FALSE, exclude estimates of the measurement intercept vector.- int_dyn
Logical. If
int_dyn = TRUE, include estimates of the dynamic process intercept vector, if available. Ifint_dyn = FALSE, exclude estimates of the dynamic process intercept vector.- cov_meas
Logical. If
cov_meas = TRUE, include estimates of the measurement error covariance matrix, if available. Ifcov_meas = FALSE, exclude estimates of the measurement error covariance matrix.- cov_dyn
Logical. If
cov_dyn = TRUE, include estimates of the process noise covariance matrix, if available. Ifcov_dyn = FALSE, exclude estimates of the process noise covariance matrix.- converged
Logical. Only include converged cases.
- vanishing_theta
Logical. Test for measurement error variance going to zero if
converged = TRUE.- theta_tol
Numeric. Tolerance for vanishing theta test if
convergedandtheta_tolareTRUE.- robust_v
Logical. If
TRUE, use robust (sandwich) sampling variance-covariance matrix in stage 1. IfFALSE, use normal theory sampling variance-covariance matrix in stage 1.- robust
Logical. If
TRUE, use robust (sandwich) sampling variance-covariance matrix in stage 2. IfFALSE, use normal theory sampling variance-covariance matrix in stage 2.- tries_explore
Integer. Number of extra tries for the wide exploration phase using
OpenMx::mxTryHardWideSearch()withcheckHess = FALSE.- tries_local
Integer. Number of extra tries for local polishing via
OpenMx::mxTryHard()when gradients remain above tolerance.- max_attempts
Integer. Maximum number of remediation attempts after the first Hessian computation fails the criteria. Each attempt may nudge off bounds, refit locally without the Hessian, and, on the last attempt, relax bounds.
- grad_tol
Numeric. Tolerance for the maximum absolute gradient. Smaller values are stricter.
- hess_tol
Numeric. Minimum allowable Hessian eigenvalue. Smaller values are less strict.
- eps
Numeric. Proximity threshold to detect parameters on their bounds and to nudge them inward by
10 * eps.- factor
Numeric. Multiplicative factor to relax parameter bounds on the final remediation attempt. Lower bounds are divided by
factorand upper bounds are multiplied byfactor.- abs_bnd_tol
Numeric scalar. Absolute tolerance used when comparing parameter values to bounds.
- rel_bnd_tol
Numeric scalar. Relative tolerance multiplier.
- silent
Logical. If
TRUE, suppresses messages during the model fitting stage.- seed
Random seed for reproducibility.
- ncores
Positive integer. Number of cores to use.
References
Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Wiley. doi:10.1002/9781118957813
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. doi:10.1007/s11336-014-9435-8
See also
Other Meta-Analysis of VAR Functions:
Meta()