This function estimates
fixed-, random-, or mixed-effects meta-analysis parameters
using the estimated coefficients and sampling variance-covariance matrix
from each individual fitted using the
fitDTVARMxID::FitDTVARMxID() function.
Usage
MetaVARMx(
  object,
  x = NULL,
  alpha_values = NULL,
  alpha_free = NULL,
  alpha_lbound = NULL,
  alpha_ubound = NULL,
  gamma_values = NULL,
  gamma_free = NULL,
  gamma_lbound = NULL,
  gamma_ubound = NULL,
  tau_sqr_d_free = NULL,
  tau_sqr_d_values = NULL,
  tau_sqr_d_lbound = NULL,
  tau_sqr_d_ubound = NULL,
  tau_sqr_l_free = NULL,
  tau_sqr_l_values = NULL,
  tau_sqr_l_lbound = NULL,
  tau_sqr_l_ubound = NULL,
  random = TRUE,
  diag = FALSE,
  effects = TRUE,
  int_meas = FALSE,
  int_dyn = FALSE,
  cov_meas = FALSE,
  cov_dyn = FALSE,
  converged = TRUE,
  grad_tol = 0.01,
  hess_tol = 1e-08,
  vanishing_theta = TRUE,
  theta_tol = 0.001,
  try = 1000,
  ncores = NULL,
  ...
)Arguments
- object
- Output of the - fitDTVARMxID::FitDTVARMxID()function.
- x
- An optional list. Each element of the list is a numeric vector of covariates for the mixed-effects model. 
- alpha_values
- Numeric vector. Optional vector of starting values for - alpha.
- alpha_free
- Logical vector. Optional vector of free ( - TRUE) parameters for- alpha.
- alpha_lbound
- Numeric vector. Optional vector of lower bound values for - alpha.
- alpha_ubound
- Numeric vector. Optional vector of upper bound values for - alpha.
- gamma_values
- Numeric matrix. Optional matrix of starting values for - gamma.
- gamma_free
- Logical matrix. Optional matrix of free ( - TRUE) parameters for- gamma.
- gamma_lbound
- Numeric matrix. Optional matrix of lower bound values for - gamma.
- gamma_ubound
- Numeric matrix. Optional matrix of upper bound values for - gamma.
- tau_sqr_d_free
- Logical vector indicating free/fixed status of the elements of - tau_sqr_d. If- NULL, all element of- tau_sqr_dare free.
- tau_sqr_d_values
- Numeric vector with starting values for - tau_sqr_d. If- NULL, defaults to a vector of ones.
- tau_sqr_d_lbound
- Numeric vector with lower bounds for - tau_sqr_d. If- NULL, no lower bounds are set.
- tau_sqr_d_ubound
- Numeric vector with upper bounds for - tau_sqr_d. If- NULL, no upper bounds are set.
- tau_sqr_l_free
- Logical matrix indicating which strictly-lower-triangular elements of - tau_sqr_lare free. Ignored if- diag = TRUE.
- tau_sqr_l_values
- Numeric matrix of starting values for the strictly-lower-triangular elements of - tau_sqr_l. If- NULL, defaults to a null matrix.
- tau_sqr_l_lbound
- Numeric matrix with lower bounds for - tau_sqr_l. If- NULL, no lower bounds are set.
- tau_sqr_l_ubound
- Numeric matrix with upper bounds for - tau_sqr_l. If- NULL, no upper bounds are set.
- random
- Logical. If - random = TRUE, estimates random effects. If- random = FALSE,- tau_sqris a null matrix.
- diag
- Logical. If - diag = TRUE,- tau_sqris a diagonal matrix. If- diag = FALSE,- tau_sqris a symmetric matrix.
- effects
- Logical. If - effects = TRUE, include estimates of the dynamic effects matrix, if available. If- effects = FALSE, exclude estimates of the dynamic effects matrix.
- int_meas
- Logical. If - int_meas = TRUE, include estimates of the measurement intercept vector, if available. If- int_meas = FALSE, exclude estimates of the measurement intercept vector.
- int_dyn
- Logical. If - int_dyn = TRUE, include estimates of the dynamic process intercept vector, if available. If- int_dyn = FALSE, exclude estimates of the dynamic process intercept vector.
- cov_meas
- Logical. If - cov_meas = TRUE, include estimates of the measurement error covariance matrix, if available. If- cov_meas = FALSE, exclude estimates of the measurement error covariance matrix.
- cov_dyn
- Logical. If - cov_dyn = TRUE, include estimates of the process noise covariance matrix, if available. If- cov_dyn = FALSE, exclude estimates of the process noise covariance matrix.
- converged
- Logical. Only include converged cases. 
- grad_tol
- Numeric scalar. Tolerance for the maximum absolute gradient if - converged = TRUE.
- hess_tol
- Numeric scalar. Tolerance for Hessian eigenvalues; eigenvalues must be strictly greater than this value if - converged = TRUE.
- vanishing_theta
- Logical. Test for measurement error variance going to zero if - converged = TRUE.
- theta_tol
- Numeric. Tolerance for vanishing theta test if - convergedand- theta_tolare- TRUE.
- try
- Positive integer. Number of extra optimization tries. 
- ncores
- Positive integer. Number of cores to use. 
- ...
- Additional arguments to pass to - OpenMx::mxTryHard().
References
Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Wiley. doi:10.1002/9781118957813
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. doi:10.1007/s11336-014-9435-8
See also
Other Meta-Analysis of VAR Functions:
Meta()