This function estimates fixed-, random-, or mixed-effects meta-analysis parameters using the estimated coefficients and sampling variance-covariance matrix from each individual.
Usage
Meta(
  y,
  v,
  x = NULL,
  alpha_values = NULL,
  alpha_free = NULL,
  alpha_lbound = NULL,
  alpha_ubound = NULL,
  gamma_values = NULL,
  gamma_free = NULL,
  gamma_lbound = NULL,
  gamma_ubound = NULL,
  tau_sqr_d_free = NULL,
  tau_sqr_d_values = NULL,
  tau_sqr_d_lbound = NULL,
  tau_sqr_d_ubound = NULL,
  tau_sqr_l_free = NULL,
  tau_sqr_l_values = NULL,
  tau_sqr_l_lbound = NULL,
  tau_sqr_l_ubound = NULL,
  random = TRUE,
  diag = FALSE,
  try = 1000,
  ncores = NULL,
  ...
)Arguments
- y
- A list. Each element of the list is a numeric vector of estimated coefficients. 
- v
- A list. Each element of the list is a sampling variance-covariance matrix of - y.
- x
- An optional list. Each element of the list is a numeric vector of covariates for the mixed-effects model. 
- alpha_values
- Numeric vector. Optional vector of starting values for - alpha.
- alpha_free
- Logical vector. Optional vector of free ( - TRUE) parameters for- alpha.
- alpha_lbound
- Numeric vector. Optional vector of lower bound values for - alpha.
- alpha_ubound
- Numeric vector. Optional vector of upper bound values for - alpha.
- gamma_values
- Numeric matrix. Optional matrix of starting values for - gamma.
- gamma_free
- Logical matrix. Optional matrix of free ( - TRUE) parameters for- gamma.
- gamma_lbound
- Numeric matrix. Optional matrix of lower bound values for - gamma.
- gamma_ubound
- Numeric matrix. Optional matrix of upper bound values for - gamma.
- tau_sqr_d_free
- Logical vector indicating free/fixed status of the elements of - tau_sqr_d. If- NULL, all element of- tau_sqr_dare free.
- tau_sqr_d_values
- Numeric vector with starting values for - tau_sqr_d. If- NULL, defaults to a vector of ones.
- tau_sqr_d_lbound
- Numeric vector with lower bounds for - tau_sqr_d. If- NULL, no lower bounds are set.
- tau_sqr_d_ubound
- Numeric vector with upper bounds for - tau_sqr_d. If- NULL, no upper bounds are set.
- tau_sqr_l_free
- Logical matrix indicating which strictly-lower-triangular elements of - tau_sqr_lare free. Ignored if- diag = TRUE.
- tau_sqr_l_values
- Numeric matrix of starting values for the strictly-lower-triangular elements of - tau_sqr_l. If- NULL, defaults to a null matrix.
- tau_sqr_l_lbound
- Numeric matrix with lower bounds for - tau_sqr_l. If- NULL, no lower bounds are set.
- tau_sqr_l_ubound
- Numeric matrix with upper bounds for - tau_sqr_l. If- NULL, no upper bounds are set.
- random
- Logical. If - random = TRUE, estimates random effects. If- random = FALSE,- tau_sqris a null matrix.
- diag
- Logical. If - diag = TRUE,- tau_sqris a diagonal matrix. If- diag = FALSE,- tau_sqris a symmetric matrix.
- try
- Positive integer. Number of extra optimization tries. 
- ncores
- Positive integer. Number of cores to use. 
- ...
- Additional arguments to pass to - OpenMx::mxTryHard().
References
Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Wiley. doi:10.1002/9781118957813
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. doi:10.1007/s11336-014-9435-8
See also
Other Meta-Analysis of VAR Functions:
MetaVARMx()