This function estimates fixed-, random-, or mixed-effects meta-analysis parameters using the estimated coefficients and sampling variance-covariance matrix from each individual.
Usage
Meta(
y,
v,
x = NULL,
beta0_values = NULL,
beta0_free = NULL,
beta0_lbound = NULL,
beta0_ubound = NULL,
beta1_values = NULL,
beta1_free = NULL,
beta1_lbound = NULL,
beta1_ubound = NULL,
tau_values = NULL,
tau_free = NULL,
tau_lbound = NULL,
tau_ubound = NULL,
random = TRUE,
diag = FALSE,
try = 1000,
ncores = NULL,
...
)
Arguments
- y
A list. Each element of the list is a numeric vector of estimated coefficients.
- v
A list. Each element of the list is a sampling variance-covariance matrix of
y
.- x
An optional list. Each element of the list is a numeric vector of covariates for the mixed-effects model.
- beta0_values
Numeric vector. Optional vector of starting values for
beta0
.- beta0_free
Logical vector. Optional vector of free (
TRUE
) parameters forbeta0
.- beta0_lbound
Numeric vector. Optional vector of lower bound values for
beta0
.- beta0_ubound
Numeric vector. Optional vector of upper bound values for
beta0
.- beta1_values
Numeric matrix. Optional matrix of starting values for
beta1
.- beta1_free
Logical matrix. Optional matrix of free (
TRUE
) parameters forbeta1
.- beta1_lbound
Numeric matrix. Optional matrix of lower bound values for
beta1
.- beta1_ubound
Numeric matrix. Optional matrix of upper bound values for
beta1
.- tau_values
Numeric matrix. Optional matrix of starting values for
t(chol(tau_sqr))
.- tau_free
Numeric matrix. Optional matrix of free (
TRUE
) parameters fort(chol(tau_sqr))
.- tau_lbound
Numeric matrix. Optional matrix of lower bound values for
t(chol(tau_sqr))
.- tau_ubound
Numeric matrix. Optional matrix of upper bound values for
t(chol(tau_sqr))
.- random
Logical. If
random = TRUE
, estimates random effects. Ifrandom = FALSE
,tau_sqr
is a null matrix.- diag
Logical. If
diag = TRUE
,tau_sqr
is a diagonal matrix. Ifdiag = FALSE
,tau_sqr
is a symmetric matrix.- try
Positive integer. Number of extra optimization tries.
- ncores
Positive integer. Number of cores to use.
- ...
Additional optional arguments to pass to
mxTryHardctsem
.
References
Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Wiley. doi:10.1002/9781118957813
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. doi:10.1007/s11336-014-9435-8
See also
Other Meta-Analysis of VAR Functions:
MetaVARMx()