Skip to contents

Model

The measurement model is given by 𝐲i,t=π›Ž+πš²π›ˆi,t+𝛆i,t,with𝛆i,tβˆΌπ’©(𝟎,𝚯)\begin{equation} \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) \end{equation} where 𝐲i,t\mathbf{y}_{i, t}, π›ˆi,t\boldsymbol{\eta}_{i, t}, and 𝛆i,t\boldsymbol{\varepsilon}_{i, t} are random variables and π›Ž\boldsymbol{\nu}, 𝚲\boldsymbol{\Lambda}, and 𝚯\boldsymbol{\Theta} are model parameters. 𝐲i,t\mathbf{y}_{i, t} represents a vector of observed random variables, π›ˆi,t\boldsymbol{\eta}_{i, t} a vector of latent random variables, and 𝛆i,t\boldsymbol{\varepsilon}_{i, t} a vector of random measurement errors, at time tt and individual ii. π›Ž\boldsymbol{\nu} denotes a vector of intercepts, 𝚲\boldsymbol{\Lambda} a matrix of factor loadings, and 𝚯\boldsymbol{\Theta} the covariance matrix of 𝛆\boldsymbol{\varepsilon}.

An alternative representation of the measurement error is given by 𝛆i,t=𝚯12𝐳i,t,with𝐳i,tβˆΌπ’©(𝟎,𝐈)\begin{equation} \boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) \end{equation} where 𝐳i,t\mathbf{z}_{i, t} is a vector of independent standard normal random variables and (𝚯12)(𝚯12)β€²=𝚯\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} .

The dynamic structure is given by dπ›ˆi,t=𝚽(π›ˆi,tβˆ’π›)dt+𝚺12d𝐖i,t\begin{equation} \mathrm{d} \boldsymbol{\eta}_{i, t} = \boldsymbol{\Phi} \left( \boldsymbol{\eta}_{i, t} - \boldsymbol{\mu} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} \end{equation} where 𝛍\boldsymbol{\mu} is the long-term mean or equilibrium level, 𝚽\boldsymbol{\Phi} is the rate of mean reversion, determining how quickly the variable returns to its mean, 𝚺\boldsymbol{\Sigma} is the matrix of volatility or randomness in the process, and d𝐖\mathrm{d}\boldsymbol{W} is a Wiener process or Brownian motion, which represents random fluctuations.

Data Generation

Notation

Let t=500t = 500 be the number of time points and n=10n = 10 be the number of individuals.

Let the measurement model intecept vector π›Ž\boldsymbol{\nu} be given by

π›Ž=(000).\begin{equation} \boldsymbol{\nu} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{equation}

Let the factor loadings matrix 𝚲\boldsymbol{\Lambda} be given by

𝚲=(100010001).\begin{equation} \boldsymbol{\Lambda} = \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) . \end{equation}

Let the measurement error covariance matrix 𝚯\boldsymbol{\Theta} be given by

𝚯=(0.20000.20000.2).\begin{equation} \boldsymbol{\Theta} = \left( \begin{array}{ccc} 0.2 & 0 & 0 \\ 0 & 0.2 & 0 \\ 0 & 0 & 0.2 \\ \end{array} \right) . \end{equation}

Let the initial condition π›ˆ0\boldsymbol{\eta}_{0} be given by

π›ˆ0βˆΌπ’©(π›π›ˆβˆ£0,πšΊπ›ˆβˆ£0)\begin{equation} \boldsymbol{\eta}_{0} \sim \mathcal{N} \left( \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}, \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} \right) \end{equation}

π›π›ˆβˆ£0=(000)\begin{equation} \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \end{equation}

πšΊπ›ˆβˆ£0=(100010001).\begin{equation} \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) . \end{equation}

Let the long-term mean vector 𝛍\boldsymbol{\mu} be given by

𝛍=(000).\begin{equation} \boldsymbol{\mu} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{equation}

Let the drift matrix 𝚽\boldsymbol{\Phi} be normally distributed with the following means

(βˆ’0.357000.771βˆ’0.5110βˆ’0.450.729βˆ’0.693)\begin{equation} \left( \begin{array}{ccc} -0.357 & 0 & 0 \\ 0.771 & -0.511 & 0 \\ -0.45 & 0.729 & -0.693 \\ \end{array} \right) \end{equation}

and covariance matrix

(0.010000000000.010000000000.010000000000.010000000000.010000000000.010000000000.010000000000.010000000000.01).\begin{equation} \left( \begin{array}{ccc} 0.01 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.01 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.01 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.01 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.01 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.01 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.01 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.01 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.01 \\ \end{array} \right) . \end{equation}

The SimPhiN function from the simStateSpace package generates random drift matrices from the multivariate normal distribution. Note that the function generates drift matrices that are stable.

Let the dynamic process noise covariance matrix 𝚺\boldsymbol{\Sigma} be given by

𝚺=(0.10000.10000.1).\begin{equation} \boldsymbol{\Sigma} = \left( \begin{array}{ccc} 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.1 \\ \end{array} \right) . \end{equation}

Let Ξ”t=0.1\Delta t = 0.1.

R Function Arguments

n
#> [1] 10
time
#> [1] 500
delta_t
#> [1] 0.1
mu0
#> [[1]]
#> [1] 0 0 0
sigma0
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    0
#> [3,]    0    0    1
sigma0_l
#> [[1]]
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    0
#> [3,]    0    0    1
mu
#> [[1]]
#> [1] 0 0 0
# first phi in the list of length n
phi[[1]]
#>            [,1]        [,2]        [,3]
#> [1,] -0.4101502  0.02987347  0.09881764
#> [2,]  0.8531253 -0.47051414  0.12907652
#> [3,] -0.2282550  0.66648281 -0.72701868
sigma
#>      [,1] [,2] [,3]
#> [1,]  0.1  0.0  0.0
#> [2,]  0.0  0.1  0.0
#> [3,]  0.0  0.0  0.1
sigma_l
#> [[1]]
#>           [,1]      [,2]      [,3]
#> [1,] 0.3162278 0.0000000 0.0000000
#> [2,] 0.0000000 0.3162278 0.0000000
#> [3,] 0.0000000 0.0000000 0.3162278
nu
#> [[1]]
#> [1] 0 0 0
lambda
#> [[1]]
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    0
#> [3,]    0    0    1
theta
#>      [,1] [,2] [,3]
#> [1,]  0.2  0.0  0.0
#> [2,]  0.0  0.2  0.0
#> [3,]  0.0  0.0  0.2
theta_l
#> [[1]]
#>           [,1]      [,2]      [,3]
#> [1,] 0.4472136 0.0000000 0.0000000
#> [2,] 0.0000000 0.4472136 0.0000000
#> [3,] 0.0000000 0.0000000 0.4472136

Visualizing the Dynamics Without Process Noise (n = 5 with Different Initial Condition)

Using the SimSSMOUIVary Function from the simStateSpace Package to Simulate Data

library(simStateSpace)
sim <- SimSSMOUIVary(
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_l = theta_l
)
data <- as.data.frame(sim)
head(data)
#>   id time         y1         y2         y3
#> 1  1  0.0 -0.9066322  0.2077655 -0.1532395
#> 2  1  0.1 -2.0187881  0.1100828  1.5700524
#> 3  1  0.2 -1.9509792  0.7388884  0.6062416
#> 4  1  0.3 -0.7648885 -0.3710951  0.6992641
#> 5  1  0.4 -1.9989218 -1.4027964 -0.1971148
#> 6  1  0.5 -1.7412161 -0.2356327 -0.4460133
plot(sim)

Model Fitting

The FitCTVARIDMx function fits a CT-VAR model on each individual ii. The argument theta_fixed = FALSE is used here to model the measurement error variances.

library(fitCTVARMx)
fit <- FitCTVARIDMx(
  data = data,
  observed = paste0("y", seq_len(k)),
  id = "id",
  time = "time",
  theta_fixed = FALSE,
  ncores = parallel::detectCores()
)
fit
#> 
#> Means of the estimated paramaters per individual.
#>       phi_11       phi_21       phi_31       phi_12       phi_22       phi_32 
#> -0.329091189  0.851689092 -0.507551362  0.015917202 -0.509584686  1.032802799 
#>       phi_13       phi_23       phi_33     sigma_11     sigma_22     sigma_33 
#>  0.007716078  0.033385190 -1.017327464  0.100409860  0.101391404  0.121158245 
#>     theta_11     theta_22     theta_33 
#>  0.200496451  0.193508168  0.197870476

Multivariate Meta-Analysis

The MetaVARMx function performs multivariate meta-analysis using the estimated parameters and the corresponding sampling variance-covariance matrix for each individual ii. Estimates with the prefix b0 correspond to the estimates of phi_mu. Estimates with the prefix b1 correspond to the estimates of the effects of x on y. Note that the effects of x on y in this case are all zeros. Estimates with the prefix t2 correspond to the estimates of phi_sigma. Estimates with the prefix i2 correspond to the estimates of heterogeniety.

x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    stats::rnorm(n = 2)
  }
)
library(metaVAR)
meta <- MetaVARMx(
  object = fit,
  x = x,
  ncores = parallel::detectCores()
)
#> Running Model with 72 parameters
#> 
#> Beginning initial fit attempt
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.0896376137265
#>  Not all eigenvalues of the Hessian are positive: 35790.7949490418, 21251.5462163924, 12296.2574802078, 7386.87142883634, 6655.50191889013, 6524.08713478392, 6053.72912691298, 5589.93811422731, 5164.47438541966, 4889.95205973168, 4878.87826200772, 4778.75799483679, 4647.98621921615, 4645.87648971558, 4184.0587950873, 3935.9105380296, 3826.51787573621, 3268.25418777488, 3135.56088806033, 3109.52567907781, 3109.26837980743, 3062.18154870229, 2946.0426343065, 2641.1621794212, 2560.13371826275, 2331.51791996992, 2288.29767799216, 2211.97518461421, 2043.187000509, 1829.5584229751, 1743.11915471529, 1720.13570132429, 1341.4993028565, 1271.95415746726, 1172.91383707082, 1148.79126488549, 1068.52920810271, 984.799723890965, 980.965482240201, 946.45841509295, 693.692807353094, 675.909913618555, 627.385426588078, 569.753731032939, 521.396489910656, 512.3152149919, 473.99447978575, 443.607697634881, 406.603409383721, 387.56324056842, 288.778163084038, 274.995326759006, 250.030003103249, 214.807448465467, 210.114957711949, 207.05828193939, 170.134247853347, 165.040337645697, 154.100173290485, 143.942099570984, 104.838272748198, 103.753340088757, 91.1293105573843, 79.156198767891, 73.231104646983, 57.0243424631682, 23.2265216497314, 17.8822012587247, 12.0958691086246, 3.08683723061231, -0.000540384241541784, -0.111188632828992
#> 
#> Beginning fit attempt 1 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.089637613759
#>  Not all eigenvalues of the Hessian are positive: 35790.787760964, 21251.5499092095, 12296.261608816, 7386.87043652605, 6655.50267693665, 6524.08804522512, 6053.72881698642, 5589.93976839236, 5164.47565317823, 4889.95297476935, 4878.87901716456, 4778.75791140113, 4647.98677464119, 4645.87618093124, 4184.05820462959, 3935.910636932, 3826.51916201422, 3268.25427279462, 3135.56195876185, 3109.52656919485, 3109.26855317487, 3062.18149315338, 2946.04261723947, 2641.16147819117, 2560.13465436414, 2331.51705304993, 2288.29821837308, 2211.97588820223, 2043.18583975654, 1829.55775748678, 1743.11897539374, 1720.13601091845, 1341.5000126958, 1271.95382435541, 1172.91410480972, 1148.79103027954, 1068.52938893636, 984.79984156273, 980.966294366577, 946.458511465854, 693.693111549231, 675.910468665729, 627.385562127458, 569.753623477207, 521.396939274451, 512.314565296247, 473.994721289198, 443.606624020264, 406.603797509511, 387.563684094479, 288.778265766919, 274.995615315187, 250.030530600024, 214.807834573014, 210.114610558916, 207.058289813624, 170.134611586102, 165.039291556242, 154.100071945496, 143.941811130221, 104.838281739908, 103.753577178437, 91.1293835274083, 79.155898329976, 73.2317224288947, 57.0241503139604, 23.2268092251812, 17.881920933156, 12.0953574591177, 3.08618753101562, -0.000128547394364792, -0.110861561367116
#> 
#> Beginning fit attempt 2 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.0896376137638
#>  Not all eigenvalues of the Hessian are positive: 35790.7903037548, 21251.5527473742, 12296.2619810252, 7386.87164298616, 6655.49653781381, 6524.08629287627, 6053.72850355809, 5589.94090688809, 5164.47395987739, 4889.95223667207, 4878.87984365031, 4778.75734809041, 4647.98771828044, 4645.87704847061, 4184.05835559769, 3935.91109494012, 3826.51988182208, 3268.25516349858, 3135.56360922235, 3109.52838915631, 3109.27003088638, 3062.18275069065, 2946.04433195552, 2641.16458739481, 2560.13615134615, 2331.5178863788, 2288.29897782195, 2211.97833113709, 2043.18699825464, 1829.55913137926, 1743.12208412322, 1720.13661345616, 1341.50093319902, 1271.9557864592, 1172.91467869914, 1148.79186499177, 1068.53001586738, 984.801606529998, 980.968110253153, 946.460721257503, 693.694573065068, 675.911655191597, 627.386778614658, 569.755450532165, 521.39789558059, 512.318039124832, 473.996395795458, 443.608591891184, 406.605188506377, 387.565737947994, 288.779218108394, 274.99640856207, 250.032295870146, 214.808418903883, 210.118524585543, 207.059698627687, 170.135314218337, 165.042030928243, 154.101685732846, 143.943048826119, 104.839419421593, 103.755074178567, 91.1303861947879, 79.1582037805216, 73.2327230092799, 57.0246895225432, 23.227325001693, 17.8836447523651, 12.0971708545256, 3.0887894610158, 0.00184700703654016, -0.108937816408868
#> 
#> Beginning fit attempt 3 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.0896376137643
#>  Not all eigenvalues of the Hessian are positive: 35790.7035932767, 21251.8004755626, 12296.5443536201, 7393.87412430802, 6673.63178647295, 6524.08726288205, 6047.91505152076, 5606.27125803673, 5199.89452687964, 4889.95212604594, 4878.21667576915, 4769.00525936511, 4647.98759466896, 4632.4341146433, 4184.05860236628, 3939.66397982648, 3825.04390811471, 3268.25474361666, 3135.48664398336, 3109.52808435266, 3109.05962258791, 3062.18269716701, 2945.5774021461, 2641.16405589883, 2560.1355119631, 2333.73853846745, 2288.29878828928, 2211.9773936853, 2082.59241695729, 1843.65620335652, 1743.12066629594, 1734.35059664712, 1450.19222501513, 1271.95535535803, 1172.39128032319, 1145.00929318048, 1064.9439332297, 980.968242536447, 946.460346073817, 881.003550119894, 695.127024871048, 665.885938275758, 626.664354314651, 570.660899707348, 530.618992581861, 512.317173156449, 487.088011700503, 443.609451198243, 406.556673519275, 383.420536130492, 287.759632522134, 276.965165496033, 246.083389510297, 217.326172267552, 214.262107361015, 210.117072632077, 170.427326828878, 165.723428022603, 153.99675911645, 147.535249942153, 104.595787956973, 94.5195403166118, 90.5298322832201, 74.3745235805562, 57.2789014914955, 55.408506506319, 23.3215006976251, 17.8835291910745, 12.0980174978294, 6.90928408422066, 0.00110196199062703, -2.18513958579279
#> 
#> Beginning fit attempt 4 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#>  Not all eigenvalues of the Hessian are positive: 35789.6311815217, 21250.6123111357, 12294.6769929187, 7390.6858443469, 6661.71586443858, 6568.25696464674, 5971.0084203315, 5602.60249992836, 5189.85753394609, 4889.9513527826, 4856.05429695101, 4760.88964695916, 4717.47265545227, 4604.08012508903, 4184.05923137639, 3930.95836583235, 3820.30177850262, 3268.25478560171, 3111.62495239176, 3109.5282080883, 3062.18145346608, 3030.19093672039, 2937.31850138454, 2737.90738110741, 2560.13645406602, 2328.45637064269, 2288.29896604451, 2211.97796327923, 2048.39630847889, 1834.53111580325, 1743.12095818124, 1718.49639258945, 1324.69914789414, 1271.95487524801, 1171.82101932514, 1140.00100727613, 1063.25628020099, 980.967157792304, 946.460392875795, 811.959950145903, 694.205121387106, 656.535055490327, 624.671181998369, 609.730783730323, 563.390273427079, 482.939202943543, 443.61038678375, 437.099423994148, 388.336770963215, 371.734624418841, 287.058781072673, 276.12660537742, 249.921422496697, 237.899150003713, 213.601221616735, 180.745470814716, 167.744368675469, 154.005825555778, 148.937943357693, 134.090712370969, 100.47723005291, 92.0426209714118, 88.6066620024206, 72.3047286794272, 57.427752000413, 35.5451253510105, 24.5125916386732, 20.019174406179, 17.8843144481129, 12.0980770575096, 0.00192390777866008, -6.51876386691514
#> 
#> Beginning fit attempt 5 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Fit attempt worse than current best:  -93.6536849038113 vs -94.0896376137643
#> 
#> Beginning fit attempt 6 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.3561874416598
#>  Not all eigenvalues of the Hessian are positive: 35963.8424966039, 21611.9849630629, 12317.3775574547, 7381.31854015812, 6774.74990258452, 6643.65906179072, 6159.9917511122, 5618.20654114443, 5208.20783062354, 4941.04366111193, 4891.68340098239, 4790.23508060195, 4739.96765123533, 4666.11160259005, 4202.67790983285, 3929.47344196158, 3818.06048501738, 3347.00152704774, 3240.56969488229, 3164.66377263185, 3131.5471558462, 3051.19713830896, 2965.80491036946, 2800.13793383403, 2542.60877076047, 2346.64014337409, 2290.56094865937, 2239.05507734645, 2057.18011213721, 1843.7327360788, 1751.51221613095, 1713.15897535576, 1382.96464242023, 1271.10347852069, 1168.49610031289, 1151.69179677216, 1058.47742362966, 986.127054563475, 983.965642239579, 937.748146359346, 721.630904334832, 653.026992847196, 619.854410323729, 520.429922551419, 515.50960222081, 461.054691370395, 446.385437659219, 440.412431560982, 396.640047680569, 377.004754963827, 290.487911927894, 276.042343703523, 243.132740445513, 221.929753376585, 215.669669294037, 205.841016936049, 185.505477755444, 158.707912310118, 152.054009791314, 137.952542234455, 100.832653596896, 96.1642531460999, 90.7513704333778, 85.1678281569594, 66.2573906455979, 54.5841872088622, 22.9291991291571, 17.9605107286432, 12.3384071393176, 11.6677069438, 7.14946816543006, -0.0093526782725849
#> 
#> Beginning fit attempt 7 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.3561874417214
#>  Not all eigenvalues of the Hessian are positive: 35963.84038944, 21611.9658888214, 12317.3719524742, 7381.3164779603, 6774.75402549825, 6643.65655373529, 6159.99128193841, 5618.20984011429, 5208.21046132879, 4941.04408743748, 4891.67955525061, 4790.23983135727, 4739.96260855658, 4666.11214679044, 4202.67067026773, 3929.4717769789, 3818.06016252854, 3347.00020048496, 3240.56903351588, 3164.66238830521, 3131.54511569107, 3051.19842330376, 2965.8061378394, 2800.13629020067, 2542.60675303321, 2346.63865249201, 2290.55880277993, 2239.05315353285, 2057.17908695938, 1843.73158121392, 1751.51247631645, 1713.15925880671, 1382.96254647843, 1271.09889659815, 1168.49612872851, 1151.68959010611, 1058.47634936954, 986.12379877412, 983.965078699785, 937.744955122234, 721.62950576507, 653.025318335884, 619.852731783708, 520.428167547143, 515.508018873885, 461.052544834937, 446.38411495321, 440.410949364201, 396.638283349355, 377.001955093697, 290.487385098996, 276.041107231076, 243.131954354524, 221.927442302178, 215.668993318721, 205.838521051366, 185.502750275994, 158.707143169433, 152.052981612982, 137.951551117174, 100.831203977263, 96.1628374748799, 90.7499730917191, 85.1656146915445, 66.2558087756373, 54.5840468532489, 22.9281071642023, 17.9584694322181, 12.3357837884511, 11.6640333123408, 7.14725684843094, -0.00986985582600287
#> 
#> Beginning fit attempt 8 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.3561874417795
#>  Not all eigenvalues of the Hessian are positive: 35963.8399066409, 21611.9700311471, 12317.3716306488, 7381.31811698508, 6774.75032053023, 6643.6599760828, 6159.99203996574, 5618.20857762734, 5208.20962178687, 4941.04552295882, 4891.68028185425, 4790.23399234024, 4739.96544739532, 4666.11313521639, 4202.67225616438, 3929.47286170715, 3818.05980141093, 3347.00258679254, 3240.57058616294, 3164.66460671931, 3131.54732920244, 3051.19864196454, 2965.80729956545, 2800.13890709468, 2542.60985154754, 2346.63990614961, 2290.5605179338, 2239.05548930402, 2057.18058038885, 1843.73289000769, 1751.51443508609, 1713.1595268318, 1382.96481176006, 1271.10054974975, 1168.49683420745, 1151.69033348883, 1058.47697027665, 986.127290686782, 983.967585476681, 937.747512620019, 721.63176940226, 653.0272713495, 619.853332375739, 520.429873235316, 515.509648959396, 461.054737278306, 446.386821856071, 440.412756122983, 396.640481925731, 377.004277407746, 290.487903602665, 276.042453591811, 243.132994367724, 221.929580525436, 215.669723708098, 205.840673790848, 185.505439842663, 158.708031513638, 152.054111788569, 137.952707833611, 100.832775174866, 96.1643515691945, 90.7513087528804, 85.1678495441308, 66.2575598355393, 54.584393334316, 22.9289641957288, 17.9624093952676, 12.3390376687133, 11.6676612521555, 7.14844392958377, -0.00809135389061376
#> 
#> Beginning fit attempt 9 of at maximum 1000 extra tries
#> Running Model with 72 parameters
#> 
#>  Lowest minimum so far:  -94.3563472614995
#> 
#> Solution found
#> 
#>  Solution found!  Final fit=-94.356347 (started at 207.37201)  (10 attempt(s): 10 valid, 0 errors)
#>  Start values from best fit:
#> -0.298145264146716,0.769002499852867,-0.311799436047286,0.0246152353886324,-0.405089142844686,0.764157770230981,-0.0390700693834415,0.054788114775767,-0.817995236912393,-0.00673518527319284,0.0230237699978349,0.0356238527868649,0.0481718804686288,0.0309455369002636,-0.0509598744100013,-0.0486694658642793,0.0295527546013973,-0.0291720325268653,-0.0401187894036512,0.151745203728209,0.0979924361269822,0.0228322879047099,-0.0337315544749833,-0.0677547355643089,-0.00766026702997163,0.074512315827474,0.0927956420439964,0.0803703471494897,0.0884390219651002,-0.150806209139736,-0.123678548197496,-0.0348089486636369,0.0671990667242483,0.104575683446339,0.0231725547215545,-0.0626039497933622,0.0644240164491316,0.175525014201319,-0.0256813292212093,0.0124171838809478,-0.13547522857711,0.0129348805985834,0.0185748510971396,0.0885846778969458,0.00552235190701193,-0.026534128272765,0.0292325747946927,0.0840770108579776,0.0376489375594068,-0.00180811004125209,-0.142079795084972,2.2250738585072e-308,2.85144903292482e-09,1.53039736590959e-08,2.45783883982625e-09,-1.42416300119077e-09,-2.17596605741654e-08,7.96278412283353e-10,-5.226153053552e-10,-6.11024157631133e-11,-4.40525110317877e-10,8.49403470119188e-12,6.66823106189422e-26,2.51886354669874e-10,3.2966373023168e-10,-3.24249492554996e-10,2.2250738585072e-308,-2.37792757136099e-10,-1.37853026285246e-10,2.2250738585072e-308,-2.34351333991341e-10,2.2250738585072e-308
summary(meta)
#>            est     se       z      p    2.5%   97.5%
#> b0_1   -0.2981 0.1039 -2.8690 0.0041 -0.5018 -0.0945
#> b0_2    0.7690 0.0962  7.9975 0.0000  0.5805  0.9575
#> b0_3   -0.3118 0.1389 -2.2450 0.0248 -0.5840 -0.0396
#> b0_4    0.0246 0.0989  0.2488 0.8035 -0.1693  0.2185
#> b0_5   -0.4051 0.0863 -4.6913 0.0000 -0.5743 -0.2358
#> b0_6    0.7642 0.1437  5.3174 0.0000  0.4825  1.0458
#> b0_7   -0.0391 0.0930 -0.4201 0.6744 -0.2213  0.1432
#> b0_8    0.0548 0.0816  0.6717 0.5018 -0.1051  0.2147
#> b0_9   -0.8180 0.1607 -5.0894 0.0000 -1.1330 -0.5030
#> b1_11  -0.0067 0.0881 -0.0765 0.9390 -0.1794  0.1659
#> b1_21   0.0230 0.0817  0.2818 0.7781 -0.1371  0.1832
#> b1_31   0.0356 0.1183  0.3012 0.7632 -0.1962  0.2674
#> b1_41   0.0482 0.0822  0.5858 0.5580 -0.1130  0.2093
#> b1_51   0.0309 0.0723  0.4282 0.6685 -0.1107  0.1726
#> b1_61  -0.0510 0.1074 -0.4745 0.6351 -0.2614  0.1595
#> b1_71  -0.0487 0.0767 -0.6349 0.5255 -0.1989  0.1016
#> b1_81   0.0296 0.0652  0.4530 0.6506 -0.0983  0.1574
#> b1_91  -0.0292 0.1139 -0.2562 0.7978 -0.2523  0.1940
#> b1_12  -0.0401 0.0885 -0.4535 0.6502 -0.2135  0.1333
#> b1_22   0.1517 0.0730  2.0790 0.0376  0.0087  0.2948
#> b1_32   0.0980 0.0917  1.0683 0.2854 -0.0818  0.2778
#> b1_42   0.0228 0.0689  0.3312 0.7405 -0.1123  0.1579
#> b1_52  -0.0337 0.0606 -0.5564 0.5779 -0.1525  0.0851
#> b1_62  -0.0678 0.0741 -0.9146 0.3604 -0.2130  0.0774
#> b1_72  -0.0077 0.0536 -0.1430 0.8863 -0.1127  0.0973
#> b1_82   0.0745 0.0455  1.6388 0.1013 -0.0146  0.1636
#> b1_92   0.0928 0.0683  1.3594 0.1740 -0.0410  0.2266
#> t2_1_1  0.0065 0.0157  0.4114 0.6807 -0.0243  0.0372
#> t2_2_1  0.0071 0.0138  0.5149 0.6066 -0.0199  0.0342
#> t2_3_1 -0.0121 0.0250 -0.4851 0.6276 -0.0611  0.0369
#> t2_4_1 -0.0099 0.0184 -0.5415 0.5882 -0.0459  0.0260
#> t2_5_1 -0.0028 0.0078 -0.3564 0.7215 -0.0182  0.0126
#> t2_6_1  0.0054 0.0185  0.2920 0.7703 -0.0308  0.0417
#> t2_7_1  0.0084 0.0150  0.5619 0.5742 -0.0209  0.0377
#> t2_8_1  0.0019 0.0061  0.3035 0.7615 -0.0102  0.0139
#> t2_9_1 -0.0050 0.0192 -0.2617 0.7936 -0.0427  0.0327
#> t2_2_2  0.0120 0.0192  0.6221 0.5339 -0.0257  0.0497
#> t2_3_2 -0.0020 0.0214 -0.0947 0.9245 -0.0440  0.0400
#> t2_4_2 -0.0126 0.0174 -0.7237 0.4692 -0.0467  0.0215
#> t2_5_2 -0.0023 0.0104 -0.2182 0.8273 -0.0227  0.0182
#> t2_6_2 -0.0028 0.0173 -0.1611 0.8720 -0.0367  0.0311
#> t2_7_2  0.0101 0.0142  0.7121 0.4764 -0.0177  0.0378
#> t2_8_2  0.0032 0.0090  0.3604 0.7186 -0.0144  0.0209
#> t2_9_2  0.0002 0.0174  0.0098 0.9922 -0.0340  0.0343
#> t2_3_3  0.0536 0.0500  1.0722 0.2836 -0.0444  0.1515
#> t2_4_3  0.0140 0.0254  0.5502 0.5822 -0.0359  0.0639
#> t2_5_3  0.0076 0.0159  0.4780 0.6327 -0.0235  0.0387
#> t2_6_3 -0.0334 0.0373 -0.8957 0.3704 -0.1066  0.0397
#> t2_7_3 -0.0133 0.0213 -0.6248 0.5321 -0.0550  0.0284
#> t2_8_3 -0.0002 0.0121 -0.0203 0.9838 -0.0239  0.0234
#> t2_9_3  0.0242 0.0350  0.6907 0.4897 -0.0445  0.0929
#> t2_4_4  0.0167 0.0227  0.7340 0.4629 -0.0278  0.0611
#> t2_5_4  0.0032 0.0107  0.2987 0.7652 -0.0179  0.0243
#> t2_6_4 -0.0071 0.0216 -0.3264 0.7441 -0.0495  0.0353
#> t2_7_4 -0.0143 0.0190 -0.7523 0.4519 -0.0514  0.0229
#> t2_8_4 -0.0033 0.0095 -0.3469 0.7287 -0.0219  0.0153
#> t2_9_4  0.0092 0.0233  0.3963 0.6919 -0.0364  0.0549
#> t2_5_5  0.0022 0.0064  0.3460 0.7294 -0.0104  0.0148
#> t2_6_5 -0.0016 0.0121 -0.1287 0.8976 -0.0254  0.0222
#> t2_7_5 -0.0024 0.0090 -0.2641 0.7917 -0.0200  0.0153
#> t2_8_5 -0.0006 0.0042 -0.1486 0.8819 -0.0089  0.0077
#> t2_9_5 -0.0009 0.0128 -0.0680 0.9458 -0.0261  0.0243
#> t2_6_6  0.0299 0.0371  0.8061 0.4202 -0.0429  0.1027
#> t2_7_6  0.0084 0.0191  0.4419 0.6586 -0.0290  0.0459
#> t2_8_6 -0.0011 0.0099 -0.1119 0.9109 -0.0206  0.0184
#> t2_9_6 -0.0282 0.0402 -0.6997 0.4841 -0.1070  0.0507
#> t2_7_7  0.0125 0.0170  0.7363 0.4615 -0.0208  0.0459
#> t2_8_7  0.0026 0.0081  0.3221 0.7474 -0.0132  0.0184
#> t2_9_7 -0.0108 0.0218 -0.4923 0.6225 -0.0535  0.0320
#> t2_8_8  0.0009 0.0040  0.2235 0.8232 -0.0069  0.0086
#> t2_9_8  0.0005 0.0112  0.0404 0.9678 -0.0215  0.0224
#> t2_9_9  0.0320 0.0492  0.6499 0.5157 -0.0644  0.1283
#> i2_1    0.0619 0.1412  0.4386 0.6609 -0.2148  0.3387
#> i2_2    0.1543 0.2098  0.7357 0.4619 -0.2569  0.5655
#> i2_3    0.4002 0.2239  1.7877 0.0738 -0.0386  0.8391
#> i2_4    0.1867 0.2068  0.9024 0.3668 -0.2187  0.5921
#> i2_5    0.0347 0.0968  0.3584 0.7200 -0.1551  0.2245
#> i2_6    0.2842 0.2524  1.1261 0.2601 -0.2104  0.7788
#> i2_7    0.2282 0.2392  0.9541 0.3400 -0.2406  0.6969
#> i2_8    0.0233 0.1019  0.2288 0.8190 -0.1764  0.2231
#> i2_9    0.3945 0.3676  1.0734 0.2831 -0.3259  1.1149

References

Cheung, M. W.-L. (2015). Meta‐analysis: A structural equation modeling approach. Wiley. https://doi.org/10.1002/9781118957813
Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 307–324. https://doi.org/10.1080/10705511.2017.1369354
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/