Nonparametric Bootstrap Confidence Intervals for the Indirect Effect using Multiple Imputation (MI nested within NB or NB(MI))
Source:R/manMCMedMiss-nb-mi.R
      NBMI.RdNonparametric Bootstrap Confidence Intervals for the Indirect Effect using Multiple Imputation (MI nested within NB or NB(MI))
Usage
NBMI(
  data_missing,
  data_mi,
  B = 5000L,
  m = 100L,
  alpha = c(0.05, 0.01, 0.001),
  mplus_bin
)Arguments
- data_missing
 Numeric matrix. Output of the
AmputeDatafunction or a three-column data set with missing data.- data_mi
 List of numeric matrices. Output of the
ImputeDatafunction or a list of three-column data sets with imputed data.- B
 Positive integer. Number of bootstrap samples.
- m
 Positive integer. Number of imputations.
- alpha
 Numeric vector. Significance level.
- mplus_bin
 Character string. Path of Mplus binary.
Value
Nonparametric bootstrap confidence intervals.
bc corresponds to bias-corrected and pc corresponds to percentile
confidence intervals.
References
Zhang, Z., & Wang, L. (2012). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154–184. doi:10.1007/s11336-012-9301-5
Zhang, Z., Wang, L., & Tong, X. (2015). Mediation analysis with missing data through multiple imputation and bootstrap. Quantitative psychology research (pp. 341–355). Springer International Publishing. doi:10.1007/978-3-319-19977-1_24