Stage 1: Estimation Stage
The estimation stage can be performed in your statistical package of
choice. The parameter estimates and the sampling covariance matrix for
the simple mediation model are given below.
Parameter Estimates
mu <- c(
0.872,
0.745
)
varnames <- c("alpha", "beta")
names(mu) <- varnames
mu
#> alpha beta
#> 0.872 0.745
Sampling Covariance Matrix
Sigma <- matrix(
data = c(
1.253778e-02,
5.244734e-06,
5.244734e-06,
1.429014e-02
),
nrow = 2
)
rownames(Sigma) <- colnames(Sigma) <- varnames
Sigma
#> alpha beta
#> alpha 1.253778e-02 5.244734e-06
#> beta 5.244734e-06 1.429014e-02
The parameter estimates of interest are \(\hat{\alpha} = 0.872\) and \(\hat{\beta} = 0.745\) and their
corresponding sampling covariance matrix.
Stage 2: Simulation Stage
In the simulation stage, \(\hat{\alpha}\) and \(\hat{\beta}\) are used as the mean vector
\(\mu\). The covariance matrix \(\Sigma\) consists of the corresponding
sampling covariance matrix.
R
Simulation
The MASS
package can be used in R
to
generate the sampling distribution of the indirect effect.
library(MASS)
mustar <- mvrnorm(
n = 20000,
mu = mu,
Sigma = Sigma
)
ab <- mustar[, 1] * mustar[, 2]
Plot

Confidence Intervals
The following corresponds to the \(0.05\), \(0.5\), \(2.5\), \(97.5\), \(99.5\), \(99.95\) percentiles.
quantile(
x = ab,
probs = c(0.0005, 0.005, 0.025, 0.975, 0.995, 0.9995)
)
#> 0.05% 0.5% 2.5% 97.5% 99.5% 99.95%
#> 0.2764884 0.3420248 0.4059116 0.9288212 1.0311513 1.1597367
Python
Simulation
The Numpy
module can be used in Python
to
generate the sampling distribution of the indirect effect.
import numpy as np
mu = [0.872, 0.745]
Sigma = [[1.253778e-02, 5.244734e-06], [5.244734e-06, 1.429014e-02]]
a, b = np.random.default_rng().multivariate_normal(mean = mu, cov = Sigma, size = 20000, method = 'eigh').T
ab = a * b
Confidence Intervals
The following corresponds to the \(0.05\), \(0.5\), \(2.5\), \(97.5\), \(99.5\), \(99.95\) percentiles.
np.percentile(a = ab, q = [0.05, 0.5, 2.5, 97.5, 99.5, 99.95])
array([0.27629, 0.34700399, 0.40509038, 0.92887276, 1.03758102, 1.15662989])
Julia
Simulation
The Distributions.jl
package can be used in
Julia
to generate the sampling distribution of the indirect
effect.
using Random, Distributions
mustar = rand(MvNormal([0.872, 0.745], [[1.253778e-02, 5.244734e-06] [5.244734e-06, 1.429014e-02]]), 20000);
a = mustar[1, 1:20000];
b = mustar[2, 1:20000];
ab = a .* b;
Confidence Intervals
The following corresponds to the \(0.05\), \(0.5\), \(2.5\), \(97.5\), \(99.5\), \(99.95\) percentiles.
using StatsBase
percentile(ab, [0.05, 0.5, 2.5, 97.5, 99.5, 99.95])
6-element Vector{Float64}:
0.2745307698592897
0.34236235018811184
0.4054190857337401
0.9260797738723169
1.0362695824493815
1.16103686651973