Skip to contents

Bias

Bias is computed as the difference between the population parameter and the mean of the parameter estimates obtained from the simulation.

data(results_culta_est, package = "manCULTA")
FigBiasCULTAEst(results_culta_est = results_culta_est)

RMSE

Root mean square error (RMSE) is the square root of the average squared difference between the simulation estimates and the population parameter.

data(results_culta_est, package = "manCULTA")
FigRMSECULTAEst(results_culta_est = results_culta_est)

Coverage

Coverage probability is the proportion of simulation replications in which the confidence interval contains the population parameter.

data(results_culta_est, package = "manCULTA")
FigCoverageCULTAEst(results_culta_est = results_culta_est)

Power

Statistical power is the proportion of simulation replications in which the null hypothesis was correctly rejected.

data(results_culta_est, package = "manCULTA")
FigPowerCULTAEst(results_culta_est = results_culta_est)

Parameters

The parameters are indexed as follows:

  1. ϕ0\phi_{0} parameter.
    Autoregressive coefficient for profile 0.

  2. ϕ1\phi_{1} parameter.
    Autoregressive coefficient for profile 1.

  3. ψT\psi_{T} parameter.
    Variance in the common trait; reflects stable between-person differences.

  4. λt2\lambda_{t2} parameter.
    Factor loading for the common trait and item 2.

  5. λt3\lambda_{t3} parameter.
    Factor loading for the common trait and item 3.

  6. λt4\lambda_{t4} parameter.
    Factor loading for the common trait and item 4.

  7. ψp11\psi_{p11} parameter.
    Trait-specific item 1 variance.

  8. ψp22\psi_{p22} parameter.
    Trait-specific item 2 variance.

  9. ψp33\psi_{p33} parameter.
    Trait-specific item 3 variance.

  10. ψp44\psi_{p44} parameter.
    Trait-specific item 4 variance.

  11. ψs0\psi_{s0} parameter.
    Initial-day variance of the common state; reflects variability in intoxication levels at observation start.

  12. ψs\psi_{s} parameter.
    Residual state variance over days; captures within-person daily fluctuations not explained by trait or AR effects.

  13. λs2\lambda_{s2} parameter.
    Factor loading for the common state and item 2.

  14. λs3\lambda_{s3} parameter.
    Factor loading for the common state and item 3.

  15. λs4\lambda_{s4} parameter.
    Factor loading for the common state and item 4.

  16. θ11\theta_{11} parameter.
    Unique state variance for item 1.

  17. θ22\theta_{22} parameter.
    Unique state variance for item 2.

  18. θ33\theta_{33} parameter.
    Unique state variance for item 3.

  19. θ44\theta_{44} parameter.
    Unique state variance for item 4.

  20. ν0\nu_{0} parameter.
    Intercept for initial log-odds of profile 0 (vs. profile 1) when X=0X = 0.

  21. κ0\kappa_{0} parameter.
    Covariate effect on initial profile membership; higher XX increases odds of profile 0.

  22. α0\alpha_{0} parameter.
    Baseline log-odds of being in profile 0 across days.

  23. β00\beta_{00} parameter.
    Increased odds of staying in profile 0 if previously in that profile; reflects persistence.

  24. γ00\gamma_{00} parameter.
    Covariate effect on staying in profile 0; higher XX increases persistence.

  25. γ10\gamma_{10} parameter.
    Covariate effect on switching from state to profile 0; higher XX increases transition odds.

  26. μ10\mu_{10} parameter.
    Profile specific mean for profile 0 and item 1.

  27. μ20\mu_{20} parameter.
    Profile specific mean for profile 0 and item 2.

  28. μ30\mu_{30} parameter.
    Profile specific mean for profile 0 and item 3.

  29. μ40\mu_{40} parameter.
    Profile specific mean for profile 0 and item 4.

  30. μ11\mu_{11} parameter.
    Profile specific mean for profile 1 and item 1.

  31. μ21\mu_{21} parameter.
    Profile specific mean for profile 1 and item 2.

  32. μ31\mu_{31} parameter.
    Profile specific mean for profile 1 and item 3.

  33. μ41\mu_{41} parameter.
    Profile specific mean for profile 1 and item 4.