Skip to contents

Plot statistical power for CULTA estimates.

Usage

FigPowerCULTAEst(results_culta_est)

Arguments

results_culta_est

Summary CULTA estimates results data frame.

Details

The parameters are indexed as follows:

1

\(\phi_{0}\) parameter. Autoregressive coefficient for profile 0.

2

\(\phi_{1}\) parameter. Autoregressive coefficient for profile 1.

3

\(\psi_{T}\) parameter. Variance in the common trait; reflects stable between-person differences.

4

\(\lambda_{t2}\) parameter. Factor loading for the common trait and item 2.

5

\(\lambda_{t3}\) parameter. Factor loading for the common trait and item 3.

6

\(\lambda_{t4}\) parameter. Factor loading for the common trait and item 4.

7

\(\psi_{p11}\) parameter. Trait-specific item 1 variance.

8

\(\psi_{p22}\) parameter. Trait-specific item 2 variance.

9

\(\psi_{p33}\) parameter. Trait-specific item 3 variance.

10

\(\psi_{p44}\) parameter. Trait-specific item 4 variance.

11

\(\psi_{s0}\) parameter. Initial-day variance of the common state; reflects variability in intoxication levels at observation start.

12

\(\psi_{s}\) parameter. Residual state variance over days; captures within-person daily fluctuations not explained by trait or AR effects.

13

\(\lambda_{s2}\) parameter. Factor loading for the common state and item 2.

14

\(\lambda_{s3}\) parameter. Factor loading for the common state and item 3.

15

\(\lambda_{s4}\) parameter. Factor loading for the common state and item 4.

16

\(\theta_{11}\) parameter. Unique state variance for item 1.

17

\(\theta_{22}\) parameter. Unique state variance for item 2.

18

\(\theta_{33}\) parameter. Unique state variance for item 3.

19

\(\theta_{44}\) parameter. Unique state variance for item 4.

20

\(\nu_{0}\) parameter. Intercept for initial log-odds of profile 0 (vs. profile 1) when \(X = 0\).

21

\(\kappa_{0}\) parameter. Covariate effect on initial profile membership; higher \(X\) increases odds of profile 0.

22

\(\alpha_{0}\) parameter. Baseline log-odds of being in profile 0 across days.

23

\(\beta_{00}\) parameter. Increased odds of staying in profile 0 if previously in that profile; reflects persistence.

24

\(\gamma_{00}\) parameter. Covariate effect on staying in profile 0; higher \(X\) increases persistence.

25

\(\gamma_{10}\) parameter. Covariate effect on switching from state to profile 0; higher \(X\) increases transition odds.

26

\(\mu_{10}\) parameter. Profile specific mean for profile 0 and item 1.

27

\(\mu_{20}\) parameter. Profile specific mean for profile 0 and item 2.

28

\(\mu_{30}\) parameter. Profile specific mean for profile 0 and item 3.

29

\(\mu_{40}\) parameter. Profile specific mean for profile 0 and item 4.

30

\(\mu_{11}\) parameter. Profile specific mean for profile 1 and item 1.

31

\(\mu_{21}\) parameter. Profile specific mean for profile 1 and item 2.

32

\(\mu_{31}\) parameter. Profile specific mean for profile 1 and item 3.

33

\(\mu_{41}\) parameter. Profile specific mean for profile 1 and item 4.

Author

Ivan Jacob Agaloos Pesigan

Examples

if (FALSE) { # \dontrun{
data(results_culta_est, package = "manCULTA")
FigPowerCULTAEst(results_culta_est)
} # }