Print Method for Object of Class ctmedmc
Usage
# S3 method for class 'ctmedmc'
print(x, alpha = 0.05, digits = 4, ...)
Value
Prints a list of matrices of time intervals, estimates, standard errors, number of Monte Carlo replications, and confidence intervals.
Examples
set.seed(42)
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
data = c(
0.002704274, -0.001475275, 0.000949122,
-0.001619422, 0.000885122, -0.000569404,
0.00085493, -0.000465824, 0.000297815,
-0.001475275, 0.004428442, -0.002642303,
0.000980573, -0.00271817, 0.001618805,
-0.000586921, 0.001478421, -0.000871547,
0.000949122, -0.002642303, 0.006402668,
-0.000697798, 0.001813471, -0.004043138,
0.000463086, -0.001120949, 0.002271711,
-0.001619422, 0.000980573, -0.000697798,
0.002079286, -0.001152501, 0.000753,
-0.001528701, 0.000820587, -0.000517524,
0.000885122, -0.00271817, 0.001813471,
-0.001152501, 0.00342605, -0.002075005,
0.000899165, -0.002532849, 0.001475579,
-0.000569404, 0.001618805, -0.004043138,
0.000753, -0.002075005, 0.004984032,
-0.000622255, 0.001634917, -0.003705661,
0.00085493, -0.000586921, 0.000463086,
-0.001528701, 0.000899165, -0.000622255,
0.002060076, -0.001096684, 0.000686386,
-0.000465824, 0.001478421, -0.001120949,
0.000820587, -0.002532849, 0.001634917,
-0.001096684, 0.003328692, -0.001926088,
0.000297815, -0.000871547, 0.002271711,
-0.000517524, 0.001475579, -0.003705661,
0.000686386, -0.001926088, 0.004726235
),
nrow = 9
)
# Specific time interval ----------------------------------------------------
mc <- MCMed(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1,
from = "x",
to = "y",
med = "m",
R = 100L # use a large value for R in actual research
)
print(mc)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> total 1 -0.1000 0.0342 100 -0.1666 -0.0440
#> direct 1 -0.2675 0.0440 100 -0.3567 -0.1863
#> indirect 1 0.1674 0.0201 100 0.1273 0.2006
#>
# Range of time intervals ---------------------------------------------------
mc <- MCMed(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1:5,
from = "x",
to = "y",
med = "m",
R = 100L # use a large value for R in actual research
)
print(mc)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> total 1 -0.1000 0.0340 100 -0.1648 -0.0320
#> direct 1 -0.2675 0.0471 100 -0.3397 -0.1738
#> indirect 1 0.1674 0.0201 100 0.1239 0.1982
#>
#> $`2`
#> interval est se R 2.5% 97.5%
#> total 2 0.0799 0.0352 100 0.0110 0.1542
#> direct 2 -0.3209 0.0555 100 -0.4178 -0.2099
#> indirect 2 0.4008 0.0413 100 0.3090 0.4663
#>
#> $`3`
#> interval est se R 2.5% 97.5%
#> total 3 0.2508 0.0337 100 0.1884 0.3100
#> direct 3 -0.2914 0.0524 100 -0.3863 -0.1918
#> indirect 3 0.5423 0.0523 100 0.4351 0.6286
#>
#> $`4`
#> interval est se R 2.5% 97.5%
#> total 4 0.3449 0.0324 100 0.2823 0.3989
#> direct 4 -0.2374 0.0464 100 -0.3272 -0.1538
#> indirect 4 0.5823 0.0575 100 0.4668 0.6888
#>
#> $`5`
#> interval est se R 2.5% 97.5%
#> total 5 0.3693 0.0325 100 0.3091 0.4402
#> direct 5 -0.1828 0.0402 100 -0.2636 -0.1132
#> indirect 5 0.5521 0.0594 100 0.4404 0.6682
#>