Skip to contents

Summary Method for an Object of Class mc

Usage

# S3 method for class 'mc'
summary(object, digits = 4, ...)

Arguments

object

Object of Class mc, that is, the output of the MC() function.

digits

Digits to print.

...

additional arguments.

Value

Returns a list with the following elements:

mean

Mean of the sampling distribution of \(\boldsymbol{\hat{\theta}}\).

var

Variance of the sampling distribution of \(\boldsymbol{\hat{\theta}}\).

bias

Monte Carlo simulation bias.

rmse

Monte Carlo simulation root mean square error.

location

Location parameter used in the Monte Carlo simulation.

scale

Scale parameter used in the Monte Carlo simulation.

Author

Ivan Jacob Agaloos Pesigan

Examples

# Fit the regression model
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
mc <- MC(object, R = 100)
summary(mc)
#> $mean
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0832    0.2273    0.1142   21.0744 3619.8014  476.6385  517.6475  327.8115 
#> sigmax3x2 sigmax3x3 
#>  149.2978  542.8706 
#> 
#> $var
#>                b1      b2      b3   sigmasq   sigmax1x1  sigmax2x1   sigmax3x1
#> b1         0.0002 -0.0003 -0.0002   -0.0111     -4.6042    -0.5010      0.3105
#> b2        -0.0003  0.0024 -0.0005    0.0117      7.6020    -0.6670     -2.1430
#> b3        -0.0002 -0.0005  0.0015   -0.0709      4.4601     0.3034      1.7803
#> sigmasq   -0.0111  0.0117 -0.0709   19.8746   -551.4091     8.3653   -161.6945
#> sigmax1x1 -4.6042  7.6020  4.4601 -551.4091 980450.9620 85188.4019 109711.6061
#> sigmax2x1 -0.5010 -0.6670  0.3034    8.3653  85188.4019 38428.4028  15576.3068
#> sigmax3x1  0.3105 -2.1430  1.7803 -161.6945 109711.6061 15576.3068  34459.7179
#> sigmax2x2  0.1017 -1.4938  0.8271  -12.9242  -1030.0465  3297.9950   1456.3705
#> sigmax3x2 -0.2361  0.1154  0.4424  -38.7005  14483.3009  7009.6589   4209.2237
#> sigmax3x3  0.2591  0.1875 -0.8235   30.7002  -7902.3786  -109.6628    278.0544
#>            sigmax2x2  sigmax3x2  sigmax3x3
#> b1            0.1017    -0.2361     0.2591
#> b2           -1.4938     0.1154     0.1875
#> b3            0.8271     0.4424    -0.8235
#> sigmasq     -12.9242   -38.7005    30.7002
#> sigmax1x1 -1030.0465 14483.3009 -7902.3786
#> sigmax2x1  3297.9950  7009.6589  -109.6628
#> sigmax3x1  1456.3705  4209.2237   278.0544
#> sigmax2x2  5280.2415  1270.4756 -1733.0413
#> sigmax3x2  1270.4756  2975.5309   -27.0574
#> sigmax3x3 -1733.0413   -27.0574  6099.5623
#> 
#> $bias
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>   -0.0010    0.0113    0.0016   -0.1704  112.6323    5.4327    7.1045   -5.4179 
#> sigmax3x2 sigmax3x3 
#>   -1.6143  -11.5681 
#> 
#> $rmse
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0147    0.0499    0.0388    4.4390  991.6312  195.1247  184.8394   72.5037 
#> sigmax3x2 sigmax3x3 
#>   54.2990   78.5645 
#> 
#> $location
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0842    0.2160    0.1126   21.2448 3507.1691  471.2058  510.5430  333.2295 
#> sigmax3x2 sigmax3x3 
#>  150.9121  554.4386 
#> 
#> $scale
#>                b1      b2      b3   sigmasq    sigmax1x1  sigmax2x1   sigmax3x1
#> b1         0.0002 -0.0003 -0.0002   -0.0073      -6.4514    -0.1818      0.0793
#> b2        -0.0003  0.0027 -0.0006    0.0097       5.4783     0.6385     -1.2960
#> b3        -0.0002 -0.0006  0.0015   -0.0510       4.7717    -0.4470      1.1153
#> sigmasq   -0.0073  0.0097 -0.0510   15.5891    -623.3795   -69.6223   -115.0921
#> sigmax1x1 -6.4514  5.4783  4.7717 -623.3795 1234077.9191 70017.7837 135353.8871
#> sigmax2x1 -0.1818  0.6385 -0.4470  -69.6223   70017.7837 32380.2229  19033.6847
#> sigmax3x1  0.0793 -1.2960  1.1153 -115.0921  135353.8871 19033.6847  43294.1991
#> sigmax2x2  0.1241 -1.2801  0.5313   11.0921    -161.6877  2275.8820   3152.0325
#> sigmax3x2 -0.1904  0.6456  0.2802  -18.6658   10148.7795  6598.7503   5669.9978
#> sigmax3x3  0.2132  0.6850 -0.9885   42.7723   -8922.3944   920.0158   1333.8790
#>            sigmax2x2  sigmax3x2  sigmax3x3
#> b1            0.1241    -0.1904     0.2132
#> b2           -1.2801     0.6456     0.6850
#> b3            0.5313     0.2802    -0.9885
#> sigmasq      11.0921   -18.6658    42.7723
#> sigmax1x1  -161.6877 10148.7795 -8922.3944
#> sigmax2x1  2275.8820  6598.7503   920.0158
#> sigmax3x1  3152.0325  5669.9978  1333.8790
#> sigmax2x2  5980.8603  1092.1986 -1134.2969
#> sigmax3x2  1092.1986  3700.7183   704.7217
#> sigmax3x3 -1134.2969   704.7217  7350.2416
#>