Skip to contents

Summary Method for an Object of Class mc

Usage

# S3 method for class 'mc'
summary(object, digits = 4, ...)

Arguments

object

Object of Class mc, that is, the output of the MC() function.

digits

Digits to print.

...

additional arguments.

Value

Returns a list with the following elements:

mean

Mean of the sampling distribution of \(\boldsymbol{\hat{\theta}}\).

var

Variance of the sampling distribution of \(\boldsymbol{\hat{\theta}}\).

bias

Monte Carlo simulation bias.

rmse

Monte Carlo simulation root mean square error.

location

Location parameter used in the Monte Carlo simulation.

scale

Scale parameter used in the Monte Carlo simulation.

Author

Ivan Jacob Agaloos Pesigan

Examples

# Fit the regression model
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
mc <- MC(object, R = 100)
summary(mc)
#> MC(object = object, R = 100)
#> $mean
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0832    0.2273    0.1142   21.1065 3611.1447  476.0296  517.5181  330.6449 
#> sigmax3x2 sigmax3x3 
#>  150.8569  543.0762 
#> 
#> $var
#>                b1      b2      b3   sigmasq   sigmax1x1  sigmax2x1  sigmax3x1
#> b1         0.0002 -0.0003 -0.0002   -0.0120     -4.2726    -0.4293     0.3883
#> b2        -0.0003  0.0025 -0.0006    0.0141      6.8647    -1.2025    -2.8625
#> b3        -0.0002 -0.0006  0.0015   -0.0663      2.6280     0.2757     1.8956
#> sigmasq   -0.0120  0.0141 -0.0663   19.1385   -268.3510    49.9355  -127.4505
#> sigmax1x1 -4.2726  6.8647  2.6280 -268.3510 871595.5465 68865.0344 95797.0266
#> sigmax2x1 -0.4293 -1.2025  0.2757   49.9355  68865.0344 37344.1407 15439.5289
#> sigmax3x1  0.3883 -2.8625  1.8956 -127.4505  95797.0266 15439.5289 35468.7569
#> sigmax2x2  0.1309 -1.7208  0.9148   -3.3713  -5075.7348  3483.6566  1882.7798
#> sigmax3x2 -0.2104 -0.0873  0.4911  -26.8380   9765.8579  6961.7183  4439.5420
#> sigmax3x3  0.2514  0.2417 -0.8208   28.7762  -6929.1966   -60.4522   252.8172
#>            sigmax2x2 sigmax3x2  sigmax3x3
#> b1            0.1309   -0.2104     0.2514
#> b2           -1.7208   -0.0873     0.2417
#> b3            0.9148    0.4911    -0.8208
#> sigmasq      -3.3713  -26.8380    28.7762
#> sigmax1x1 -5075.7348 9765.8579 -6929.1966
#> sigmax2x1  3483.6566 6961.7183   -60.4522
#> sigmax3x1  1882.7798 4439.5420   252.8172
#> sigmax2x2  5388.2098 1439.8419 -1607.3905
#> sigmax3x2  1439.8419 3113.2530    57.5257
#> sigmax3x3 -1607.3905   57.5257  6116.1742
#> 
#> $bias
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>   -0.0010    0.0113    0.0016   -0.1384  103.9756    4.8238    6.9751   -2.5846 
#> sigmax3x2 sigmax3x3 
#>   -0.0552  -11.3625 
#> 
#> $rmse
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0147    0.0513    0.0390    4.3550  934.7141  192.3382  187.5173   73.0822 
#> sigmax3x2 sigmax3x3 
#>   55.5169   78.6392 
#> 
#> $location
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0842    0.2160    0.1126   21.2448 3507.1691  471.2058  510.5430  333.2295 
#> sigmax3x2 sigmax3x3 
#>  150.9121  554.4386 
#> 
#> $scale
#>                b1      b2      b3   sigmasq    sigmax1x1  sigmax2x1   sigmax3x1
#> b1         0.0002 -0.0003 -0.0002   -0.0073      -6.4514    -0.1818      0.0793
#> b2        -0.0003  0.0027 -0.0006    0.0097       5.4783     0.6385     -1.2960
#> b3        -0.0002 -0.0006  0.0015   -0.0510       4.7717    -0.4470      1.1153
#> sigmasq   -0.0073  0.0097 -0.0510   15.5891    -623.3795   -69.6223   -115.0921
#> sigmax1x1 -6.4514  5.4783  4.7717 -623.3795 1234077.9191 70017.7837 135353.8871
#> sigmax2x1 -0.1818  0.6385 -0.4470  -69.6223   70017.7837 32380.2229  19033.6847
#> sigmax3x1  0.0793 -1.2960  1.1153 -115.0921  135353.8871 19033.6847  43294.1991
#> sigmax2x2  0.1241 -1.2801  0.5313   11.0921    -161.6877  2275.8820   3152.0325
#> sigmax3x2 -0.1904  0.6456  0.2802  -18.6658   10148.7795  6598.7503   5669.9978
#> sigmax3x3  0.2132  0.6850 -0.9885   42.7723   -8922.3944   920.0158   1333.8790
#>            sigmax2x2  sigmax3x2  sigmax3x3
#> b1            0.1241    -0.1904     0.2132
#> b2           -1.2801     0.6456     0.6850
#> b3            0.5313     0.2802    -0.9885
#> sigmasq      11.0921   -18.6658    42.7723
#> sigmax1x1  -161.6877 10148.7795 -8922.3944
#> sigmax2x1  2275.8820  6598.7503   920.0158
#> sigmax3x1  3152.0325  5669.9978  1333.8790
#> sigmax2x2  5980.8603  1092.1986 -1134.2969
#> sigmax3x2  1092.1986  3700.7183   704.7217
#> sigmax3x3 -1134.2969   704.7217  7350.2416
#>