Skip to contents

Summary Method for an Object of Class mc

Usage

# S3 method for class 'mc'
summary(object, digits = 4, ...)

Arguments

object

Object of Class mc, that is, the output of the MC() function.

digits

Digits to print.

...

additional arguments.

Value

Returns a list with the following elements:

mean

Mean of the sampling distribution of \(\boldsymbol{\hat{\theta}}\).

var

Variance of the sampling distribution of \(\boldsymbol{\hat{\theta}}\).

bias

Monte Carlo simulation bias.

rmse

Monte Carlo simulation root mean square error.

location

Location parameter used in the Monte Carlo simulation.

scale

Scale parameter used in the Monte Carlo simulation.

Author

Ivan Jacob Agaloos Pesigan

Examples

# Fit the regression model
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
mc <- MC(object, R = 100)
summary(mc)
#> MC(object = object, R = 100)
#> $mean
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0855    0.2192    0.1144   21.0793 3536.5569  466.4309  528.7742  342.2669 
#> sigmax3x2 sigmax3x3 
#>  155.7474  557.1612 
#> 
#> $var
#>                b1      b2      b3   sigmasq    sigmax1x1  sigmax2x1   sigmax3x1
#> b1         0.0002 -0.0004 -0.0001   -0.0079      -7.7167    -0.5720      0.0516
#> b2        -0.0004  0.0029 -0.0005   -0.0004       8.0391    -0.2946     -2.9652
#> b3        -0.0001 -0.0005  0.0013   -0.0584       6.4137     0.2717      1.7175
#> sigmasq   -0.0079 -0.0004 -0.0584   16.9411    -314.3656    34.8260    -74.0046
#> sigmax1x1 -7.7167  8.0391  6.4137 -314.3656 1123104.2354 83493.9236 100323.7300
#> sigmax2x1 -0.5720 -0.2946  0.2717   34.8260   83493.9236 31672.0469  14133.3509
#> sigmax3x1  0.0516 -2.9652  1.7175  -74.0046  100323.7300 14133.3509  31909.1440
#> sigmax2x2  0.0337 -0.9942  0.4918   18.5096    5453.7952  2730.9280   4642.5670
#> sigmax3x2 -0.2628  0.4262  0.1824  -15.3243   11307.9487  5844.6613   4136.8488
#> sigmax3x3  0.2602  0.5481 -0.9642   67.8322  -15249.8855 -1129.7055    255.9731
#>            sigmax2x2  sigmax3x2   sigmax3x3
#> b1            0.0337    -0.2628      0.2602
#> b2           -0.9942     0.4262      0.5481
#> b3            0.4918     0.1824     -0.9642
#> sigmasq      18.5096   -15.3243     67.8322
#> sigmax1x1  5453.7952 11307.9487 -15249.8855
#> sigmax2x1  2730.9280  5844.6613  -1129.7055
#> sigmax3x1  4642.5670  4136.8488    255.9731
#> sigmax2x2  5151.3870  1066.1870  -1859.1171
#> sigmax3x2  1066.1870  2911.9506   -102.7055
#> sigmax3x3 -1859.1171  -102.7055   8272.2350
#> 
#> $bias
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0013    0.0032    0.0018   -0.1655   29.3878   -4.7749   18.2312    9.0374 
#> sigmax3x2 sigmax3x3 
#>    4.8353    2.7225 
#> 
#> $rmse
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0148    0.0533    0.0360    4.0987 1054.8634  177.1387  178.6685   71.9830 
#> sigmax3x2 sigmax3x3 
#>   53.9093   90.5369 
#> 
#> $location
#>        b1        b2        b3   sigmasq sigmax1x1 sigmax2x1 sigmax3x1 sigmax2x2 
#>    0.0842    0.2160    0.1126   21.2448 3507.1691  471.2058  510.5430  333.2295 
#> sigmax3x2 sigmax3x3 
#>  150.9121  554.4386 
#> 
#> $scale
#>                b1      b2      b3   sigmasq    sigmax1x1  sigmax2x1   sigmax3x1
#> b1         0.0002 -0.0003 -0.0002   -0.0073      -6.4514    -0.1818      0.0793
#> b2        -0.0003  0.0027 -0.0006    0.0097       5.4783     0.6385     -1.2960
#> b3        -0.0002 -0.0006  0.0015   -0.0510       4.7717    -0.4470      1.1153
#> sigmasq   -0.0073  0.0097 -0.0510   15.5891    -623.3795   -69.6223   -115.0921
#> sigmax1x1 -6.4514  5.4783  4.7717 -623.3795 1234077.9191 70017.7837 135353.8871
#> sigmax2x1 -0.1818  0.6385 -0.4470  -69.6223   70017.7837 32380.2229  19033.6847
#> sigmax3x1  0.0793 -1.2960  1.1153 -115.0921  135353.8871 19033.6847  43294.1991
#> sigmax2x2  0.1241 -1.2801  0.5313   11.0921    -161.6877  2275.8820   3152.0325
#> sigmax3x2 -0.1904  0.6456  0.2802  -18.6658   10148.7795  6598.7503   5669.9978
#> sigmax3x3  0.2132  0.6850 -0.9885   42.7723   -8922.3944   920.0158   1333.8790
#>            sigmax2x2  sigmax3x2  sigmax3x3
#> b1            0.1241    -0.1904     0.2132
#> b2           -1.2801     0.6456     0.6850
#> b3            0.5313     0.2802    -0.9885
#> sigmasq      11.0921   -18.6658    42.7723
#> sigmax1x1  -161.6877 10148.7795 -8922.3944
#> sigmax2x1  2275.8820  6598.7503   920.0158
#> sigmax3x1  3152.0325  5669.9978  1333.8790
#> sigmax2x2  5980.8603  1092.1986 -1134.2969
#> sigmax3x2  1092.1986  3700.7183   704.7217
#> sigmax3x3 -1134.2969   704.7217  7350.2416
#>