Skip to contents

Model

The measurement model is given by 𝐲i,t=π›Ž+πš²π›ˆi,t+𝛆i,t,with𝛆i,tβˆΌπ’©(𝟎,𝚯)\begin{equation} \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) \end{equation} where 𝐲i,t\mathbf{y}_{i, t}, π›ˆi,t\boldsymbol{\eta}_{i, t}, and 𝛆i,t\boldsymbol{\varepsilon}_{i, t} are random variables and π›Ž\boldsymbol{\nu}, 𝚲\boldsymbol{\Lambda}, and 𝚯\boldsymbol{\Theta} are model parameters. 𝐲i,t\mathbf{y}_{i, t} represents a vector of observed random variables, π›ˆi,t\boldsymbol{\eta}_{i, t} a vector of latent random variables, and 𝛆i,t\boldsymbol{\varepsilon}_{i, t} a vector of random measurement errors, at time tt and individual ii. π›Ž\boldsymbol{\nu} denotes a vector of intercepts, 𝚲\boldsymbol{\Lambda} a matrix of factor loadings, and 𝚯\boldsymbol{\Theta} the covariance matrix of 𝛆\boldsymbol{\varepsilon}.

An alternative representation of the measurement error is given by 𝛆i,t=𝚯12𝐳i,t,with𝐳i,tβˆΌπ’©(𝟎,𝐈)\begin{equation} \boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) \end{equation} where 𝐳i,t\mathbf{z}_{i, t} is a vector of independent standard normal random variables and (𝚯12)(𝚯12)β€²=𝚯\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} .

The dynamic structure is given by π›ˆi,t=𝛂+π›ƒπ›ˆi,tβˆ’1+𝛇i,t,with𝛇i,tβˆΌπ’©(𝟎,𝚿)\begin{equation} \boldsymbol{\eta}_{i, t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{i, t - 1} + \boldsymbol{\zeta}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\zeta}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Psi} \right) \end{equation} where π›ˆi,t\boldsymbol{\eta}_{i, t}, π›ˆi,tβˆ’1\boldsymbol{\eta}_{i, t - 1}, and 𝛇i,t\boldsymbol{\zeta}_{i, t} are random variables, and 𝛂\boldsymbol{\alpha}, 𝛃\boldsymbol{\beta}, and 𝚿\boldsymbol{\Psi} are model parameters. Here, π›ˆi,t\boldsymbol{\eta}_{i, t} is a vector of latent variables at time tt and individual ii, π›ˆi,tβˆ’1\boldsymbol{\eta}_{i, t - 1} represents a vector of latent variables at time tβˆ’1t - 1 and individual ii, and 𝛇i,t\boldsymbol{\zeta}_{i, t} represents a vector of dynamic noise at time tt and individual ii. 𝛂\boldsymbol{\alpha} denotes a vector of intercepts, 𝛃\boldsymbol{\beta} a matrix of autoregression and cross regression coefficients, and 𝚿\boldsymbol{\Psi} the covariance matrix of 𝛇i,t\boldsymbol{\zeta}_{i, t}.

An alternative representation of the dynamic noise is given by 𝛇i,t=𝚿12𝐳i,t,with𝐳i,tβˆΌπ’©(𝟎,𝐈)\begin{equation} \boldsymbol{\zeta}_{i, t} = \boldsymbol{\Psi}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) \end{equation} where (𝚿12)(𝚿12)β€²=𝚿\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right) \left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Psi} .

Data Generation

Notation

Let t=500t = 500 be the number of time points and n=50n = 50 be the number of individuals.

Let the measurement model intecept vector π›Ž\boldsymbol{\nu} be given by

π›Ž=(000).\begin{equation} \boldsymbol{\nu} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{equation}

Let the factor loadings matrix 𝚲\boldsymbol{\Lambda} be given by

𝚲=(100010001).\begin{equation} \boldsymbol{\Lambda} = \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) . \end{equation}

Let the measurement error covariance matrix 𝚯\boldsymbol{\Theta} be given by

𝚯=(0.20000.20000.2).\begin{equation} \boldsymbol{\Theta} = \left( \begin{array}{ccc} 0.2 & 0 & 0 \\ 0 & 0.2 & 0 \\ 0 & 0 & 0.2 \\ \end{array} \right) . \end{equation}

Let the initial condition π›ˆ0\boldsymbol{\eta}_{0} be given by

π›ˆ0βˆΌπ’©(π›π›ˆβˆ£0,πšΊπ›ˆβˆ£0)\begin{equation} \boldsymbol{\eta}_{0} \sim \mathcal{N} \left( \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}, \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} \right) \end{equation}

π›π›ˆβˆ£0=(000)\begin{equation} \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \end{equation}

πšΊπ›ˆβˆ£0=(0.19607840.11832320.02985390.11832320.34377110.13818550.02985390.13818550.2663828).\begin{equation} \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{ccc} 0.1960784 & 0.1183232 & 0.0298539 \\ 0.1183232 & 0.3437711 & 0.1381855 \\ 0.0298539 & 0.1381855 & 0.2663828 \\ \end{array} \right) . \end{equation}

Let the constant vector 𝛂\boldsymbol{\alpha} be given by

𝛂=(000).\begin{equation} \boldsymbol{\alpha} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{equation}

Let the transition matrix 𝛃\boldsymbol{\beta} be given by

𝛃=(0.7000.50.60βˆ’0.10.40.5).\begin{equation} \boldsymbol{\beta} = \left( \begin{array}{ccc} 0.7 & 0 & 0 \\ 0.5 & 0.6 & 0 \\ -0.1 & 0.4 & 0.5 \\ \end{array} \right) . \end{equation}

Let the dynamic process noise 𝚿\boldsymbol{\Psi} be given by

𝚿=(0.10000.10000.1).\begin{equation} \boldsymbol{\Psi} = \left( \begin{array}{ccc} 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.1 \\ \end{array} \right) . \end{equation}

R Function Arguments

n
#> [1] 50
time
#> [1] 500
mu0
#> [1] 0 0 0
sigma0
#>            [,1]      [,2]       [,3]
#> [1,] 0.19607843 0.1183232 0.02985385
#> [2,] 0.11832319 0.3437711 0.13818551
#> [3,] 0.02985385 0.1381855 0.26638284
sigma0_l # sigma0_l <- t(chol(sigma0))
#>            [,1]      [,2]     [,3]
#> [1,] 0.44280744 0.0000000 0.000000
#> [2,] 0.26721139 0.5218900 0.000000
#> [3,] 0.06741949 0.2302597 0.456966
alpha
#> [1] 0 0 0
beta
#>      [,1] [,2] [,3]
#> [1,]  0.7  0.0  0.0
#> [2,]  0.5  0.6  0.0
#> [3,] -0.1  0.4  0.5
psi
#>      [,1] [,2] [,3]
#> [1,]  0.1  0.0  0.0
#> [2,]  0.0  0.1  0.0
#> [3,]  0.0  0.0  0.1
psi_l # psi_l <- t(chol(psi))
#>           [,1]      [,2]      [,3]
#> [1,] 0.3162278 0.0000000 0.0000000
#> [2,] 0.0000000 0.3162278 0.0000000
#> [3,] 0.0000000 0.0000000 0.3162278
nu
#> [1] 0 0 0
lambda
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    0
#> [3,]    0    0    1
theta
#>      [,1] [,2] [,3]
#> [1,]  0.2  0.0  0.0
#> [2,]  0.0  0.2  0.0
#> [3,]  0.0  0.0  0.2
theta_l # theta_l <- t(chol(theta))
#>           [,1]      [,2]      [,3]
#> [1,] 0.4472136 0.0000000 0.0000000
#> [2,] 0.0000000 0.4472136 0.0000000
#> [3,] 0.0000000 0.0000000 0.4472136

Visualizing the Dynamics Without Process Noise (n = 5 with Different Initial Condition)

Using the SimSSMFixed Function from the simStateSpace Package to Simulate Data

library(simStateSpace)
sim <- SimSSMFixed(
  n = n,
  time = time,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  alpha = alpha,
  beta = beta,
  psi_l = psi_l,
  nu = nu,
  lambda = lambda,
  theta_l = theta_l,
  type = 0
)
data <- as.data.frame(sim)
head(data)
#>   id time          y1         y2         y3
#> 1  1    0 -0.66908807 0.16178434  0.2955693
#> 2  1    1 -0.23021811 0.22873073 -0.2540210
#> 3  1    2  0.93689389 0.09496693 -0.9267506
#> 4  1    3  0.04445794 0.67521289 -0.1792168
#> 5  1    4  0.15413707 0.82591676  0.8976536
#> 6  1    5 -0.09943698 0.67154173  0.2853507
summary(data)
#>        id            time             y1                  y2            
#>  Min.   : 1.0   Min.   :  0.0   Min.   :-2.840534   Min.   :-2.6713369  
#>  1st Qu.:13.0   1st Qu.:124.8   1st Qu.:-0.416876   1st Qu.:-0.4981385  
#>  Median :25.5   Median :249.5   Median :-0.001155   Median : 0.0025796  
#>  Mean   :25.5   Mean   :249.5   Mean   :-0.001805   Mean   :-0.0008212  
#>  3rd Qu.:38.0   3rd Qu.:374.2   3rd Qu.: 0.415794   3rd Qu.: 0.4959426  
#>  Max.   :50.0   Max.   :499.0   Max.   : 2.602905   Max.   : 3.0434140  
#>        y3            
#>  Min.   :-2.6755956  
#>  1st Qu.:-0.4538511  
#>  Median : 0.0004791  
#>  Mean   :-0.0007703  
#>  3rd Qu.: 0.4558317  
#>  Max.   : 2.5539258
plot(sim)

Model Fitting

Prepare Data

dynr_data <- dynr::dynr.data(
  data = data,
  id = "id",
  time = "time",
  observed = c("y1", "y2", "y3")
)

Prepare Initial Condition

dynr_initial <- dynr::prep.initial(
  values.inistate = mu0,
  params.inistate = c("mu0_1_1", "mu0_2_1", "mu0_3_1"),
  values.inicov = sigma0,
  params.inicov = matrix(
    data = c(
      "sigma0_1_1", "sigma0_2_1", "sigma0_3_1",
      "sigma0_2_1", "sigma0_2_2", "sigma0_3_2",
      "sigma0_3_1", "sigma0_3_2", "sigma0_3_3"
    ),
    nrow = 3
  )
)

Prepare Measurement Model

dynr_measurement <- dynr::prep.measurement(
  values.load = diag(3),
  params.load = matrix(data = "fixed", nrow = 3, ncol = 3),
  state.names = c("eta_1", "eta_2", "eta_3"),
  obs.names = c("y1", "y2", "y3")
)

Prepare Dynamic Process

dynr_dynamics <- dynr::prep.formulaDynamics(
  formula = list(
    eta_1 ~ alpha_1_1 * 1 + beta_1_1 * eta_1 + beta_1_2 * eta_2 + beta_1_3 * eta_3,
    eta_2 ~ alpha_2_1 * 1 + beta_2_1 * eta_1 + beta_2_2 * eta_2 + beta_2_3 * eta_3,
    eta_3 ~ alpha_3_1 * 1 + beta_3_1 * eta_1 + beta_3_2 * eta_2 + beta_3_3 * eta_3
  ),
  startval = c(
    alpha_1_1 = alpha[1], alpha_2_1 = alpha[2], alpha_3_1 = alpha[3],
    beta_1_1 = beta[1, 1], beta_1_2 = beta[1, 2], beta_1_3 = beta[1, 3],
    beta_2_1 = beta[2, 1], beta_2_2 = beta[2, 2], beta_2_3 = beta[2, 3],
    beta_3_1 = beta[3, 1], beta_3_2 = beta[3, 2], beta_3_3 = beta[3, 3]
  ),
  isContinuousTime = FALSE
)

Prepare Process Noise

dynr_noise <- dynr::prep.noise(
  values.latent = psi,
  params.latent = matrix(
    data = c(
      "psi_1_1", "psi_2_1", "psi_3_1",
      "psi_2_1", "psi_2_2", "psi_3_2",
      "psi_3_1", "psi_3_2", "psi_3_3"
    ),
    nrow = 3
  ),
  values.observed = theta,
  params.observed = matrix(
    data = c(
      "theta_1_1", "fixed", "fixed",
      "fixed", "theta_2_2", "fixed",
      "fixed", "fixed", "theta_3_3"
    ),
    nrow = 3
  )
)

Prepare the Model

model <- dynr::dynr.model(
  data = dynr_data,
  initial = dynr_initial,
  measurement = dynr_measurement,
  dynamics = dynr_dynamics,
  noise = dynr_noise,
  outfile = "ssm.c"
)

Fit the Model

results <- dynr::dynr.cook(
  model,
  debug_flag = TRUE,
  verbose = FALSE
)
#> [1] "Get ready!!!!"
#> using C compiler: β€˜gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
#> Optimization function called.
#> Starting Hessian calculation ...
#> Finished Hessian calculation.
#> Original exit flag:  3 
#> Modified exit flag:  3 
#> Optimization terminated successfully: ftol_rel or ftol_abs was reached. 
#> Original fitted parameters:  -0.0005696701 0.0007412162 -0.0005853766 0.69398 
#> -0.001058797 -0.00282184 0.5030571 0.5920169 0.009998796 -0.09849283 0.390885 
#> 0.4980036 -2.311951 0.0007181543 -0.0112485 -2.250306 -0.01714039 -2.354348 
#> -1.62337 -1.654926 -1.579457 0.005486136 -0.08360275 0.1681976 -1.93857 
#> 0.3690757 -0.1260065 -0.5817687 0.3423438 -2.090488 
#> 
#> Transformed fitted parameters:  -0.0005696701 0.0007412162 -0.0005853766 
#> 0.69398 -0.001058797 -0.00282184 0.5030571 0.5920169 0.009998796 -0.09849283 
#> 0.390885 0.4980036 0.09906775 7.114593e-05 -0.001114364 0.105367 -0.001806831 
#> 0.09499889 0.197233 0.1911062 0.2060869 0.005486136 -0.08360275 0.1681976 
#> 0.1439096 0.05311354 -0.01813355 0.5785119 0.1846464 0.1914154 
#> 
#> Doing end processing
#> Successful trial
#> Total Time: 22.62674 
#> Backend Time: 22.61796

Summary

summary(results)
#> Coefficients:
#>              Estimate Std. Error t value   ci.lower   ci.upper Pr(>|t|)    
#> alpha_1_1  -5.697e-04  2.173e-03  -0.262 -4.829e-03  3.690e-03   0.3966    
#> alpha_2_1   7.412e-04  2.740e-03   0.270 -4.630e-03  6.112e-03   0.3934    
#> alpha_3_1  -5.854e-04  2.673e-03  -0.219 -5.825e-03  4.654e-03   0.4133    
#> beta_1_1    6.940e-01  1.919e-02  36.156  6.564e-01  7.316e-01   <2e-16 ***
#> beta_1_2   -1.059e-03  1.167e-02  -0.091 -2.394e-02  2.182e-02   0.4639    
#> beta_1_3   -2.822e-03  9.031e-03  -0.312 -2.052e-02  1.488e-02   0.3773    
#> beta_2_1    5.031e-01  2.023e-02  24.869  4.634e-01  5.427e-01   <2e-16 ***
#> beta_2_2    5.920e-01  1.551e-02  38.180  5.616e-01  6.224e-01   <2e-16 ***
#> beta_2_3    9.999e-03  1.135e-02   0.881 -1.226e-02  3.225e-02   0.1893    
#> beta_3_1   -9.849e-02  1.498e-02  -6.576 -1.278e-01 -6.914e-02   <2e-16 ***
#> beta_3_2    3.909e-01  1.478e-02  26.452  3.619e-01  4.198e-01   <2e-16 ***
#> beta_3_3    4.980e-01  1.467e-02  33.936  4.692e-01  5.268e-01   <2e-16 ***
#> psi_1_1     9.907e-02  6.140e-03  16.134  8.703e-02  1.111e-01   <2e-16 ***
#> psi_2_1     7.115e-05  2.186e-03   0.033 -4.214e-03  4.356e-03   0.4870    
#> psi_3_1    -1.114e-03  2.064e-03  -0.540 -5.160e-03  2.931e-03   0.2946    
#> psi_2_2     1.054e-01  5.282e-03  19.949  9.501e-02  1.157e-01   <2e-16 ***
#> psi_3_2    -1.807e-03  2.057e-03  -0.878 -5.838e-03  2.224e-03   0.1899    
#> psi_3_3     9.500e-02  6.073e-03  15.642  8.310e-02  1.069e-01   <2e-16 ***
#> theta_1_1   1.972e-01  5.150e-03  38.299  1.871e-01  2.073e-01   <2e-16 ***
#> theta_2_2   1.911e-01  5.123e-03  37.303  1.811e-01  2.011e-01   <2e-16 ***
#> theta_3_3   2.061e-01  6.206e-03  33.207  1.939e-01  2.183e-01   <2e-16 ***
#> mu0_1_1     5.486e-03  7.282e-02   0.075 -1.372e-01  1.482e-01   0.4700    
#> mu0_2_1    -8.360e-02  1.212e-01  -0.690 -3.212e-01  1.540e-01   0.2452    
#> mu0_3_1     1.682e-01  8.579e-02   1.960  4.407e-05  3.364e-01   0.0250 *  
#> sigma0_1_1  1.439e-01  5.277e-02   2.727  4.047e-02  2.473e-01   0.0032 ** 
#> sigma0_2_1  5.311e-02  5.819e-02   0.913 -6.093e-02  1.672e-01   0.1807    
#> sigma0_3_1 -1.813e-02  4.591e-02  -0.395 -1.081e-01  7.185e-02   0.3464    
#> sigma0_2_2  5.785e-01  1.474e-01   3.924  2.896e-01  8.674e-01   <2e-16 ***
#> sigma0_3_2  1.846e-01  7.633e-02   2.419  3.505e-02  3.342e-01   0.0078 ** 
#> sigma0_3_3  1.914e-01  7.427e-02   2.577  4.585e-02  3.370e-01   0.0050 ** 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> -2 log-likelihood value at convergence = 132009.77
#> AIC = 132069.77
#> BIC = 132313.57

Parameter Estimates

alpha_hat
#> [1] -0.0005696701  0.0007412162 -0.0005853766
beta_hat
#>             [,1]         [,2]         [,3]
#> [1,]  0.69398004 -0.001058797 -0.002821840
#> [2,]  0.50305712  0.592016898  0.009998796
#> [3,] -0.09849283  0.390885007  0.498003562
psi_hat
#>               [,1]          [,2]         [,3]
#> [1,]  9.906775e-02  7.114593e-05 -0.001114364
#> [2,]  7.114593e-05  1.053670e-01 -0.001806831
#> [3,] -1.114364e-03 -1.806831e-03  0.094998892
theta_hat
#>          [,1]      [,2]      [,3]
#> [1,] 0.197233 0.0000000 0.0000000
#> [2,] 0.000000 0.1911062 0.0000000
#> [3,] 0.000000 0.0000000 0.2060869
mu0_hat
#> [1]  0.005486136 -0.083602755  0.168197613
sigma0_hat
#>             [,1]       [,2]        [,3]
#> [1,]  0.14390961 0.05311354 -0.01813355
#> [2,]  0.05311354 0.57851189  0.18464639
#> [3,] -0.01813355 0.18464639  0.19141542

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. https://doi.org/10.1080/10705511003661553
Ou, L., Hunter, M. D., & Chow, S.-M. (2019). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal, 11(1), 91. https://doi.org/10.32614/rj-2019-012
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/