The OrnsteinβUhlenbeck Model
Ivan Jacob Agaloos Pesigan
2025-01-18
Source:vignettes/ou.Rmd
ou.Rmd
Model
The measurement model is given by where , , and are random variables and , , and are model parameters. represents a vector of observed random variables, a vector of latent random variables, and a vector of random measurement errors, at time and individual . denotes a vector of intercepts, a matrix of factor loadings, and the covariance matrix of .
An alternative representation of the measurement error is given by where is a vector of independent standard normal random variables and .
The dynamic structure is given by where is the long-term mean or equilibrium level, is the rate of mean reversion, determining how quickly the variable returns to its mean, is the matrix of volatility or randomness in the process, and is a Wiener process or Brownian motion, which represents random fluctuations.
Data Generation
Notation
Let be the number of time points and be the number of individuals.
Let the measurement model intecept vector be given by
Let the factor loadings matrix be given by
Let the measurement error covariance matrix be given by
Let the initial condition be given by
Let the long-term mean vector be given by
Let the rate of mean reversion matrix be given by
Let the dynamic process noise covariance matrix be given by
Let .
R Function Arguments
n
#> [1] 5
time
#> [1] 1000
delta_t
#> [1] 0.1
mu0
#> [1] 0 0 0
sigma0
#> [,1] [,2] [,3]
#> [1,] 1.0 0.2 0.2
#> [2,] 0.2 1.0 0.2
#> [3,] 0.2 0.2 1.0
sigma0_l # sigma0_l <- t(chol(sigma0))
#> [,1] [,2] [,3]
#> [1,] 1.0 0.0000000 0.0000000
#> [2,] 0.2 0.9797959 0.0000000
#> [3,] 0.2 0.1632993 0.9660918
mu
#> [1] 0 0 0
phi
#> [,1] [,2] [,3]
#> [1,] -0.357 0.000 0.000
#> [2,] 0.771 -0.511 0.000
#> [3,] -0.450 0.729 -0.693
sigma
#> [,1] [,2] [,3]
#> [1,] 0.24455556 0.02201587 -0.05004762
#> [2,] 0.02201587 0.07067800 0.01539456
#> [3,] -0.05004762 0.01539456 0.07553061
sigma_l # sigma_l <- t(chol(sigma))
#> [,1] [,2] [,3]
#> [1,] 0.49452559 0.0000000 0.000000
#> [2,] 0.04451917 0.2620993 0.000000
#> [3,] -0.10120330 0.0759256 0.243975
nu
#> [1] 0 0 0
lambda
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 0 1 0
#> [3,] 0 0 1
theta
#> [,1] [,2] [,3]
#> [1,] 0.2 0.0 0.0
#> [2,] 0.0 0.2 0.0
#> [3,] 0.0 0.0 0.2
theta_l # theta_l <- t(chol(theta))
#> [,1] [,2] [,3]
#> [1,] 0.4472136 0.0000000 0.0000000
#> [2,] 0.0000000 0.4472136 0.0000000
#> [3,] 0.0000000 0.0000000 0.4472136
Visualizing the Dynamics Without Measurement Error and Process Noise (n = 5 with Different Initial Condition)
Using the SimSSMOUFixed
Function from the
simStateSpace
Package to Simulate Data
library(simStateSpace)
sim <- SimSSMOUFixed(
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0
)
data <- as.data.frame(sim)
head(data)
#> id time y1 y2 y3
#> 1 1 0.0 0.29937539 -1.37581548 1.3779071
#> 2 1 0.1 -0.98770381 -0.03632195 0.8363080
#> 3 1 0.2 0.33221051 -0.40321664 1.2054318
#> 4 1 0.3 -0.09485392 -0.82030556 1.0272653
#> 5 1 0.4 -1.50322069 -0.36841853 0.1821731
#> 6 1 0.5 -0.75049839 0.35752476 0.2862544
summary(data)
#> id time y1 y2
#> Min. :1 Min. : 0.00 Min. :-2.25375 Min. :-2.75152
#> 1st Qu.:2 1st Qu.:24.98 1st Qu.:-0.41569 1st Qu.:-0.47639
#> Median :3 Median :49.95 Median : 0.04509 Median : 0.08626
#> Mean :3 Mean :49.95 Mean : 0.03947 Mean : 0.05358
#> 3rd Qu.:4 3rd Qu.:74.92 3rd Qu.: 0.50782 3rd Qu.: 0.61048
#> Max. :5 Max. :99.90 Max. : 2.74461 Max. : 3.02675
#> y3
#> Min. :-2.34092
#> 1st Qu.:-0.44476
#> Median : 0.02716
#> Mean : 0.01476
#> 3rd Qu.: 0.48321
#> Max. : 2.34972
plot(sim)
Model Fitting
Prepare Initial Condition
dynr_initial <- dynr::prep.initial(
values.inistate = mu0,
params.inistate = c("mu0_1_1", "mu0_2_1", "mu0_3_1"),
values.inicov = sigma0,
params.inicov = matrix(
data = c(
"sigma0_1_1", "sigma0_2_1", "sigma0_3_1",
"sigma0_2_1", "sigma0_2_2", "sigma0_3_2",
"sigma0_3_1", "sigma0_3_2", "sigma0_3_3"
),
nrow = 3
)
)
Prepare Measurement Model
dynr_measurement <- dynr::prep.measurement(
values.load = diag(3),
params.load = matrix(data = "fixed", nrow = 3, ncol = 3),
state.names = c("eta_1", "eta_2", "eta_3"),
obs.names = c("y1", "y2", "y3")
)
Prepare Dynamic Process
dynr_dynamics <- dynr::prep.formulaDynamics(
formula = list(
eta_1 ~ (phi_1_1 * (eta_1 - mu_1_1)) + (phi_1_2 * (eta_2 - mu_2_1)) + (phi_1_3 * (eta_3 - mu_3_1)),
eta_2 ~ (phi_2_1 * (eta_1 - mu_1_1)) + (phi_2_2 * (eta_2 - mu_2_1)) + (phi_2_3 * (eta_3 - mu_3_1)),
eta_3 ~ (phi_3_1 * (eta_1 - mu_1_1)) + (phi_3_2 * (eta_2 - mu_2_1)) + (phi_3_3 * (eta_3 - mu_3_1))
),
startval = c(
mu_1_1 = mu[1], mu_2_1 = mu[2], mu_3_1 = mu[3],
phi_1_1 = phi[1, 1], phi_1_2 = phi[1, 2], phi_1_3 = phi[1, 3],
phi_2_1 = phi[2, 1], phi_2_2 = phi[2, 2], phi_2_3 = phi[2, 3],
phi_3_1 = phi[3, 1], phi_3_2 = phi[3, 2], phi_3_3 = phi[3, 3]
),
isContinuousTime = TRUE
)
Prepare Process Noise
dynr_noise <- dynr::prep.noise(
values.latent = sigma,
params.latent = matrix(
data = c(
"sigma_1_1", "sigma_2_1", "sigma_3_1",
"sigma_2_1", "sigma_2_2", "sigma_3_2",
"sigma_3_1", "sigma_3_2", "sigma_3_3"
),
nrow = 3
),
values.observed = theta,
params.observed = matrix(
data = c(
"theta_1_1", "fixed", "fixed",
"fixed", "theta_2_2", "fixed",
"fixed", "fixed", "theta_3_3"
),
nrow = 3
)
)
Prepare the Model
model <- dynr::dynr.model(
data = dynr_data,
initial = dynr_initial,
measurement = dynr_measurement,
dynamics = dynr_dynamics,
noise = dynr_noise,
outfile = "ou.c"
)
Add lower and upper bounds to aid in the optimization.
Fit the Model
results <- dynr::dynr.cook(
model,
debug_flag = TRUE,
verbose = FALSE
)
#> [1] "Get ready!!!!"
#> using C compiler: βgcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0β
#> Optimization function called.
#> Starting Hessian calculation ...
#> Finished Hessian calculation.
#> Original exit flag: 3
#> Modified exit flag: 3
#> Optimization terminated successfully: ftol_rel or ftol_abs was reached.
#> Original fitted parameters: 0.05480875 0.0970006 0.04993973 -0.434506
#> 0.02467277 -0.05454905 0.8417982 -0.6017518 0.1099265 -0.3702948 0.6609449
#> -0.6606183 -1.381888 0.08161089 -0.2479494 -2.480951 0.1751864 -2.810068
#> -1.625097 -1.682562 -1.597112 -0.3660337 -0.4092527 0.2149727 -0.7538976
#> 0.6368556 0.4928618 -0.5914103 0.6108847 -2.103637
#>
#> Transformed fitted parameters: 0.05480875 0.0970006 0.04993973 -0.434506
#> 0.02467277 -0.05454905 0.8417982 -0.6017518 0.1099265 -0.3702948 0.6609449
#> -0.6606183 0.2511041 0.02049283 -0.0622611 0.08533609 0.009575553 0.07820615
#> 0.1968925 0.1858971 0.2024804 -0.3660337 -0.4092527 0.2149727 0.470529
#> 0.2996591 0.2319058 0.7443856 0.4858433 0.4428818
#>
#> Doing end processing
#> Successful trial
#> Total Time: 7.343273
#> Backend Time: 7.331166
Summary
summary(results)
#> Coefficients:
#> Estimate Std. Error t value ci.lower ci.upper Pr(>|t|)
#> mu_1_1 0.054809 0.051341 1.068 -0.045818 0.155436 0.1429
#> mu_2_1 0.097001 0.086113 1.126 -0.071777 0.265778 0.1300
#> mu_3_1 0.049940 0.057135 0.874 -0.062042 0.161922 0.1911
#> phi_1_1 -0.434506 0.180354 -2.409 -0.787994 -0.081018 0.0080 **
#> phi_1_2 0.024673 0.154258 0.160 -0.277668 0.327013 0.4365
#> phi_1_3 -0.054549 0.126095 -0.433 -0.301690 0.192592 0.3327
#> phi_2_1 0.841798 0.116934 7.199 0.612611 1.070985 <2e-16 ***
#> phi_2_2 -0.601752 0.102169 -5.890 -0.802000 -0.401504 <2e-16 ***
#> phi_2_3 0.109926 0.083850 1.311 -0.054416 0.274269 0.0950 .
#> phi_3_1 -0.370295 0.114555 -3.232 -0.594819 -0.145771 0.0006 ***
#> phi_3_2 0.660945 0.099134 6.667 0.466647 0.855243 <2e-16 ***
#> phi_3_3 -0.660618 0.081176 -8.138 -0.819720 -0.501517 <2e-16 ***
#> sigma_1_1 0.251104 0.031869 7.879 0.188642 0.313566 <2e-16 ***
#> sigma_2_1 0.020493 0.012759 1.606 -0.004513 0.045499 0.0541 .
#> sigma_3_1 -0.062261 0.012982 -4.796 -0.087706 -0.036816 <2e-16 ***
#> sigma_2_2 0.085336 0.010363 8.234 0.065024 0.105648 <2e-16 ***
#> sigma_3_2 0.009576 0.006803 1.408 -0.003758 0.022909 0.0797 .
#> sigma_3_3 0.078206 0.009743 8.027 0.059110 0.097303 <2e-16 ***
#> theta_1_1 0.196892 0.005250 37.504 0.186603 0.207182 <2e-16 ***
#> theta_2_2 0.185897 0.004255 43.687 0.177557 0.194237 <2e-16 ***
#> theta_3_3 0.202480 0.004592 44.090 0.193479 0.211481 <2e-16 ***
#> mu0_1_1 -0.366034 0.327590 -1.117 -1.008099 0.276031 0.1319
#> mu0_2_1 -0.409253 0.397704 -1.029 -1.188738 0.370233 0.1518
#> mu0_3_1 0.214973 0.314431 0.684 -0.401300 0.831246 0.2471
#> sigma0_1_1 0.470529 0.340595 1.381 -0.197025 1.138083 0.0836 .
#> sigma0_2_1 0.299659 0.323106 0.927 -0.333617 0.932935 0.1769
#> sigma0_3_1 0.231906 0.254674 0.911 -0.267246 0.731058 0.1813
#> sigma0_2_2 0.744386 0.505722 1.472 -0.246811 1.735582 0.0706 .
#> sigma0_3_2 0.485843 0.352649 1.378 -0.205336 1.177023 0.0842 .
#> sigma0_3_3 0.442882 0.313556 1.412 -0.171676 1.057439 0.0789 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log-likelihood value at convergence = 21202.41
#> AIC = 21262.41
#> BIC = 21457.92
#> [1] -0.3660337 -0.4092527 0.2149727
Parameter Estimates
mu_hat
#> [1] 0.05480875 0.09700060 0.04993973
phi_hat
#> [,1] [,2] [,3]
#> [1,] -0.4345060 0.02467277 -0.05454905
#> [2,] 0.8417982 -0.60175178 0.10992650
#> [3,] -0.3702948 0.66094491 -0.66061828
sigma_hat
#> [,1] [,2] [,3]
#> [1,] 0.25110408 0.020492828 -0.062261099
#> [2,] 0.02049283 0.085336089 0.009575553
#> [3,] -0.06226110 0.009575553 0.078206146
theta_hat
#> [,1] [,2] [,3]
#> [1,] 0.1968925 0.0000000 0.0000000
#> [2,] 0.0000000 0.1858971 0.0000000
#> [3,] 0.0000000 0.0000000 0.2024804
mu0_hat
#> [1] -0.3660337 -0.4092527 0.2149727
sigma0_hat
#> [,1] [,2] [,3]
#> [1,] 0.4705290 0.2996591 0.2319058
#> [2,] 0.2996591 0.7443856 0.4858433
#> [3,] 0.2319058 0.4858433 0.4428818
beta_var1_hat <- expm::expm(phi_hat)
beta_var1_hat
#> [,1] [,2] [,3]
#> [1,] 0.65704464 0.004621693 -0.03138432
#> [2,] 0.49886539 0.570658931 0.04636742
#> [3,] -0.05872866 0.355366244 0.53861155