Skip to contents

Model

The measurement model is given by 𝐲i,t=π›Ž+πš²π›ˆi,t+𝛆i,t,with𝛆i,tβˆΌπ’©(𝟎,𝚯)\begin{equation} \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) \end{equation} where 𝐲i,t\mathbf{y}_{i, t}, π›ˆi,t\boldsymbol{\eta}_{i, t}, and 𝛆i,t\boldsymbol{\varepsilon}_{i, t} are random variables and π›Ž\boldsymbol{\nu}, 𝚲\boldsymbol{\Lambda}, and 𝚯\boldsymbol{\Theta} are model parameters. 𝐲i,t\mathbf{y}_{i, t} represents a vector of observed random variables, π›ˆi,t\boldsymbol{\eta}_{i, t} a vector of latent random variables, and 𝛆i,t\boldsymbol{\varepsilon}_{i, t} a vector of random measurement errors, at time tt and individual ii. π›Ž\boldsymbol{\nu} denotes a vector of intercepts, 𝚲\boldsymbol{\Lambda} a matrix of factor loadings, and 𝚯\boldsymbol{\Theta} the covariance matrix of 𝛆\boldsymbol{\varepsilon}.

An alternative representation of the measurement error is given by 𝛆i,t=𝚯12𝐳i,t,with𝐳i,tβˆΌπ’©(𝟎,𝐈)\begin{equation} \boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) \end{equation} where 𝐳i,t\mathbf{z}_{i, t} is a vector of independent standard normal random variables and (𝚯12)(𝚯12)β€²=𝚯\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} .

The dynamic structure is given by dπ›ˆi,t=𝚽(π›ˆi,tβˆ’π›)dt+𝚺12d𝐖i,t\begin{equation} \mathrm{d} \boldsymbol{\eta}_{i, t} = \boldsymbol{\Phi} \left( \boldsymbol{\eta}_{i, t} - \boldsymbol{\mu} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} \end{equation} where 𝛍\boldsymbol{\mu} is the long-term mean or equilibrium level, 𝚽\boldsymbol{\Phi} is the rate of mean reversion, determining how quickly the variable returns to its mean, 𝚺\boldsymbol{\Sigma} is the matrix of volatility or randomness in the process, and d𝐖\mathrm{d}\boldsymbol{W} is a Wiener process or Brownian motion, which represents random fluctuations.

Data Generation

Notation

Let t=1000t = 1000 be the number of time points and n=1000n = 1000 be the number of individuals.

Let the measurement model intecept vector π›Ž\boldsymbol{\nu} be given by

π›Ž=(000).\begin{equation} \boldsymbol{\nu} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{equation}

Let the factor loadings matrix 𝚲\boldsymbol{\Lambda} be given by

𝚲=(100010001).\begin{equation} \boldsymbol{\Lambda} = \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) . \end{equation}

Let the measurement error covariance matrix 𝚯\boldsymbol{\Theta} be given by

𝚯=(0.20000.20000.2).\begin{equation} \boldsymbol{\Theta} = \left( \begin{array}{ccc} 0.2 & 0 & 0 \\ 0 & 0.2 & 0 \\ 0 & 0 & 0.2 \\ \end{array} \right) . \end{equation}

Let the initial condition π›ˆ0\boldsymbol{\eta}_{0} be given by

π›ˆ0βˆΌπ’©(π›π›ˆβˆ£0,πšΊπ›ˆβˆ£0)\begin{equation} \boldsymbol{\eta}_{0} \sim \mathcal{N} \left( \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}, \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} \right) \end{equation}

π›π›ˆβˆ£0=(000)\begin{equation} \boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \end{equation}

πšΊπ›ˆβˆ£0=(10.20.20.210.20.20.21).\begin{equation} \boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0} = \left( \begin{array}{ccc} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.2 \\ 0.2 & 0.2 & 1 \\ \end{array} \right) . \end{equation}

Let the long-term mean vector 𝛍\boldsymbol{\mu} be given by

𝛍=(000).\begin{equation} \boldsymbol{\mu} = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) . \end{equation}

Let the rate of mean reversion matrix 𝚽\boldsymbol{\Phi} be given by

𝚽=(βˆ’0.357000.771βˆ’0.5110βˆ’0.450.729βˆ’0.693).\begin{equation} \boldsymbol{\Phi} = \left( \begin{array}{ccc} -0.357 & 0 & 0 \\ 0.771 & -0.511 & 0 \\ -0.45 & 0.729 & -0.693 \\ \end{array} \right) . \end{equation}

Let the dynamic process noise covariance matrix 𝚺\boldsymbol{\Sigma} be given by

𝚺=(0.24455560.0220159βˆ’0.05004760.02201590.0706780.0153946βˆ’0.05004760.01539460.0755306).\begin{equation} \boldsymbol{\Sigma} = \left( \begin{array}{ccc} 0.2445556 & 0.0220159 & -0.0500476 \\ 0.0220159 & 0.070678 & 0.0153946 \\ -0.0500476 & 0.0153946 & 0.0755306 \\ \end{array} \right) . \end{equation}

Let Ξ”t=0.1\Delta t = 0.1.

R Function Arguments

n
#> [1] 1000
time
#> [1] 1000
delta_t
#> [1] 0.1
mu0
#> [1] 0 0 0
sigma0
#>      [,1] [,2] [,3]
#> [1,]  1.0  0.2  0.2
#> [2,]  0.2  1.0  0.2
#> [3,]  0.2  0.2  1.0
sigma0_l # sigma0_l <- t(chol(sigma0))
#>      [,1]      [,2]      [,3]
#> [1,]  1.0 0.0000000 0.0000000
#> [2,]  0.2 0.9797959 0.0000000
#> [3,]  0.2 0.1632993 0.9660918
mu
#> [1] 0 0 0
phi
#>        [,1]   [,2]   [,3]
#> [1,] -0.357  0.000  0.000
#> [2,]  0.771 -0.511  0.000
#> [3,] -0.450  0.729 -0.693
sigma
#>             [,1]       [,2]        [,3]
#> [1,]  0.24455556 0.02201587 -0.05004762
#> [2,]  0.02201587 0.07067800  0.01539456
#> [3,] -0.05004762 0.01539456  0.07553061
sigma_l # sigma_l <- t(chol(sigma))
#>             [,1]      [,2]     [,3]
#> [1,]  0.49452559 0.0000000 0.000000
#> [2,]  0.04451917 0.2620993 0.000000
#> [3,] -0.10120330 0.0759256 0.243975
nu
#> [1] 0 0 0
lambda
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    0
#> [3,]    0    0    1
theta
#>      [,1] [,2] [,3]
#> [1,]  0.2  0.0  0.0
#> [2,]  0.0  0.2  0.0
#> [3,]  0.0  0.0  0.2
theta_l # theta_l <- t(chol(theta))
#>           [,1]      [,2]      [,3]
#> [1,] 0.4472136 0.0000000 0.0000000
#> [2,] 0.0000000 0.4472136 0.0000000
#> [3,] 0.0000000 0.0000000 0.4472136

Visualizing the Dynamics Without Measurement Error and Process Noise (n = 5 with Different Initial Condition)

Using the SimSSMOUFixed Function from the simStateSpace Package to Simulate Data

library(simStateSpace)
sim <- SimSSMOUFixed(
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_l = theta_l,
  type = 0
)
data <- as.data.frame(sim)
head(data)
#>   id time          y1          y2        y3
#> 1  1  0.0  0.29937539 -1.37581548 1.3779071
#> 2  1  0.1 -0.98770381 -0.03632195 0.8363080
#> 3  1  0.2  0.33221051 -0.40321664 1.2054318
#> 4  1  0.3 -0.09485392 -0.82030556 1.0272653
#> 5  1  0.4 -1.50322069 -0.36841853 0.1821731
#> 6  1  0.5 -0.75049839  0.35752476 0.2862544
summary(data)
#>        id              time             y1                  y2           
#>  Min.   :   1.0   Min.   : 0.00   Min.   :-3.981741   Min.   :-4.091222  
#>  1st Qu.: 250.8   1st Qu.:24.98   1st Qu.:-0.490953   1st Qu.:-0.584801  
#>  Median : 500.5   Median :49.95   Median : 0.005798   Median : 0.009320  
#>  Mean   : 500.5   Mean   :49.95   Mean   : 0.005499   Mean   : 0.007007  
#>  3rd Qu.: 750.2   3rd Qu.:74.92   3rd Qu.: 0.504090   3rd Qu.: 0.600191  
#>  Max.   :1000.0   Max.   :99.90   Max.   : 4.319747   Max.   : 4.187849  
#>        y3           
#>  Min.   :-3.673010  
#>  1st Qu.:-0.479035  
#>  Median : 0.002762  
#>  Mean   : 0.001891  
#>  3rd Qu.: 0.482969  
#>  Max.   : 4.363632
plot(sim)

Model Fitting

Prepare Data

dynr_data <- dynr::dynr.data(
  dataframe = data,
  id = "id",
  time = "time",
  observed = c("y1", "y2", "y3")
)

Prepare Initial Condition

dynr_initial <- dynr::prep.initial(
  values.inistate = mu0,
  params.inistate = c("mu0_1_1", "mu0_2_1", "mu0_3_1"),
  values.inicov = sigma0,
  params.inicov = matrix(
    data = c(
      "sigma0_1_1", "sigma0_2_1", "sigma0_3_1",
      "sigma0_2_1", "sigma0_2_2", "sigma0_3_2",
      "sigma0_3_1", "sigma0_3_2", "sigma0_3_3"
    ),
    nrow = 3
  )
)

Prepare Measurement Model

dynr_measurement <- dynr::prep.measurement(
  values.load = diag(3),
  params.load = matrix(data = "fixed", nrow = 3, ncol = 3),
  state.names = c("eta_1", "eta_2", "eta_3"),
  obs.names = c("y1", "y2", "y3")
)

Prepare Dynamic Process

dynr_dynamics <- dynr::prep.formulaDynamics(
  formula = list(  
    eta_1 ~ (phi_1_1 * (eta_1 - mu_1_1)) + (phi_1_2 * (eta_2 - mu_2_1)) + (phi_1_3 * (eta_3 - mu_3_1)),
    eta_2 ~ (phi_2_1 * (eta_1 - mu_1_1)) + (phi_2_2 * (eta_2 - mu_2_1)) + (phi_2_3 * (eta_3 - mu_3_1)),
    eta_3 ~ (phi_3_1 * (eta_1 - mu_1_1)) + (phi_3_2 * (eta_2 - mu_2_1)) + (phi_3_3 * (eta_3 - mu_3_1))
  ),
  startval = c(
    mu_1_1 = mu[1], mu_2_1 = mu[2], mu_3_1 = mu[3],
    phi_1_1 = phi[1, 1], phi_1_2 = phi[1, 2], phi_1_3 = phi[1, 3],
    phi_2_1 = phi[2, 1], phi_2_2 = phi[2, 2], phi_2_3 = phi[2, 3],
    phi_3_1 = phi[3, 1], phi_3_2 = phi[3, 2], phi_3_3 = phi[3, 3]
  ),
  isContinuousTime = TRUE
)

Prepare Process Noise

dynr_noise <- dynr::prep.noise(
  values.latent = sigma,
  params.latent = matrix(
    data = c(
      "sigma_1_1", "sigma_2_1", "sigma_3_1",
      "sigma_2_1", "sigma_2_2", "sigma_3_2",
      "sigma_3_1", "sigma_3_2", "sigma_3_3"
    ),
    nrow = 3
  ),
  values.observed = theta,
  params.observed = matrix(
    data = c(
      "theta_1_1", "fixed", "fixed",
      "fixed", "theta_2_2", "fixed",
      "fixed", "fixed", "theta_3_3"
    ),
    nrow = 3
  )
)

Prepare the Model

model <- dynr::dynr.model(
  data = dynr_data,
  initial = dynr_initial,
  measurement = dynr_measurement,
  dynamics = dynr_dynamics,
  noise = dynr_noise,
  outfile = "ou.c"
)

Add lower and upper bounds to aid in the optimization.

model$lb[
  c(
    "phi_1_1",
    "phi_1_2",
    "phi_1_3",
    "phi_2_1",
    "phi_2_2",
    "phi_2_3",
    "phi_3_1",
    "phi_3_2",
    "phi_3_3"
  )
] <- -1.5
model$ub[
  c(
    "phi_1_1",
    "phi_1_2",
    "phi_1_3",
    "phi_2_1",
    "phi_2_2",
    "phi_2_3",
    "phi_3_1",
    "phi_3_2",
    "phi_3_3"
  )
] <- +1.5

Fit the Model

results <- dynr::dynr.cook(
  model,
  debug_flag = TRUE,
  verbose = FALSE
)
#> [1] "Get ready!!!!"
#> using C compiler: β€˜gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
#> Optimization function called.
#> Starting Hessian calculation ...
#> Finished Hessian calculation.
#> Original exit flag:  3 
#> Modified exit flag:  3 
#> Optimization terminated successfully: ftol_rel or ftol_abs was reached. 
#> Original fitted parameters:  0.003618424 0.003958073 -0.0001418471 -0.3492072 
#> -0.01051393 0.006002923 0.7704453 -0.5100404 -0.0006556109 -0.4511334 0.7283834 
#> -0.6934193 -1.407162 0.0922747 -0.2015102 -2.660961 0.2845036 -2.818866 
#> -1.611389 -1.611329 -1.609704 -0.02470139 0.007251663 0.03819751 -0.006521297 
#> 0.08963148 0.1948516 0.04919685 0.1787325 -0.03387155 
#> 
#> Transformed fitted parameters:  0.003618424 0.003958073 -0.0001418471 
#> -0.3492072 -0.01051393 0.006002923 0.7704453 -0.5100404 -0.0006556109 
#> -0.4511334 0.7283834 -0.6934193 0.2448372 0.02259228 -0.0493372 0.07196571 
#> 0.01532883 0.07527187 0.1996101 0.1996222 0.1999469 -0.02470139 0.007251663 
#> 0.03819751 0.9934999 0.08904887 0.1935851 1.058409 0.2050968 1.037972 
#> 
#> Doing end processing
#> Warning in sqrt(diag(iHess)): NaNs produced
#> Warning in sqrt(diag(x$inv.hessian)): NaNs produced
#> Warning: These parameters may have untrustworthy standard errors: mu0_2_1,
#> sigma0_1_1, sigma0_2_2, sigma0_3_3.
#> Total Time: 1.089781 
#> Backend Time: 1.089773

Summary

summary(results)
#> Coefficients:
#>              Estimate Std. Error  t value   ci.lower   ci.upper Pr(>|t|)    
#> mu_1_1      0.0036184  0.0042587    0.850 -0.0047285  0.0119653   0.1978    
#> mu_2_1      0.0039581  0.0068552    0.577 -0.0094778  0.0173940   0.2818    
#> mu_3_1     -0.0001418  0.0044739   -0.032 -0.0089106  0.0086269   0.4874    
#> phi_1_1    -0.3492072  0.0122732  -28.453 -0.3732622 -0.3251522   <2e-16 ***
#> phi_1_2    -0.0105139  0.0107170   -0.981 -0.0315188  0.0104909   0.1633    
#> phi_1_3     0.0060029  0.0080773    0.743 -0.0098283  0.0218341   0.2287    
#> phi_2_1     0.7704453  0.0061490  125.297  0.7583936  0.7824970   <2e-16 ***
#> phi_2_2    -0.5100404  0.0054032  -94.396 -0.5206305 -0.4994503   <2e-16 ***
#> phi_2_3    -0.0006556  0.0042162   -0.155 -0.0089192  0.0076079   0.4382    
#> phi_3_1    -0.4511334  0.0083562  -53.988 -0.4675113 -0.4347555   <2e-16 ***
#> phi_3_2     0.7283834  0.0074170   98.204  0.7138463  0.7429205   <2e-16 ***
#> phi_3_3    -0.6934193  0.0056349 -123.057 -0.7044636 -0.6823750   <2e-16 ***
#> sigma_1_1   0.2448372  0.0022716  107.783  0.2403850  0.2492894   <2e-16 ***
#> sigma_2_1   0.0225923  0.0007997   28.252  0.0210249  0.0241596   <2e-16 ***
#> sigma_3_1  -0.0493372  0.0009188  -53.695 -0.0511381 -0.0475363   <2e-16 ***
#> sigma_2_2   0.0719657  0.0006040  119.151  0.0707819  0.0731495   <2e-16 ***
#> sigma_3_2   0.0153288  0.0004449   34.453  0.0144568  0.0162009   <2e-16 ***
#> sigma_3_3   0.0752719  0.0006862  109.689  0.0739269  0.0766169   <2e-16 ***
#> theta_1_1   0.1996101  0.0003745  532.954  0.1988760  0.2003442   <2e-16 ***
#> theta_2_2   0.1996222  0.0003167  630.224  0.1990014  0.2002430   <2e-16 ***
#> theta_3_3   0.1999469  0.0003210  622.902  0.1993177  0.2005760   <2e-16 ***
#> mu0_1_1    -0.0247014  0.0219017   -1.128 -0.0676278  0.0182251   0.1297    
#> mu0_2_1     0.0072517        NaN       NA        NaN        NaN       NA    
#> mu0_3_1     0.0381975  0.0178003    2.146  0.0033096  0.0730855   0.0159 *  
#> sigma0_1_1  0.9934999        NaN       NA        NaN        NaN       NA    
#> sigma0_2_1  0.0890489  0.0325965    2.732  0.0251609  0.1529368   0.0031 ** 
#> sigma0_3_1  0.1935851  0.0331723    5.836  0.1285685  0.2586016   <2e-16 ***
#> sigma0_2_2  1.0584087        NaN       NA        NaN        NaN       NA    
#> sigma0_3_2  0.2050968  0.0309378    6.629  0.1444598  0.2657338   <2e-16 ***
#> sigma0_3_3  1.0379722        NaN       NA        NaN        NaN       NA    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> -2 log-likelihood value at convergence = 4297047.59
#> AIC = 4297107.59
#> BIC = 4297462.06
#> [1] -0.024701391  0.007251663  0.038197509

Parameter Estimates

mu_hat
#> [1]  0.0036184237  0.0039580727 -0.0001418471
phi_hat
#>            [,1]        [,2]          [,3]
#> [1,] -0.3492072 -0.01051393  0.0060029228
#> [2,]  0.7704453 -0.51004038 -0.0006556109
#> [3,] -0.4511334  0.72838338 -0.6934192985
sigma_hat
#>             [,1]       [,2]        [,3]
#> [1,]  0.24483722 0.02259228 -0.04933720
#> [2,]  0.02259228 0.07196571  0.01532883
#> [3,] -0.04933720 0.01532883  0.07527187
theta_hat
#>           [,1]      [,2]      [,3]
#> [1,] 0.1996101 0.0000000 0.0000000
#> [2,] 0.0000000 0.1996222 0.0000000
#> [3,] 0.0000000 0.0000000 0.1999469
mu0_hat
#> [1] -0.024701391  0.007251663  0.038197509
sigma0_hat
#>            [,1]       [,2]      [,3]
#> [1,] 0.99349992 0.08904887 0.1935851
#> [2,] 0.08904887 1.05840869 0.2050968
#> [3,] 0.19358507 0.20509676 1.0379722
beta_var1_hat <- expm::expm(phi_hat)
beta_var1_hat
#>            [,1]         [,2]        [,3]
#> [1,]  0.7020358 -0.005532608 0.003577427
#> [2,]  0.5011358  0.598106144 0.001021309
#> [3,] -0.1012113  0.400281020 0.499296528

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. https://doi.org/10.1080/10705511003661553
Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 61–75. https://doi.org/10.1080/10705511.2014.973960
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological Methods, 16(4), 468–490. https://doi.org/10.1037/a0024375
Ou, L., Hunter, M. D., & Chow, S.-M. (2019). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal, 11(1), 91. https://doi.org/10.32614/rj-2019-012
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical Review, 36(5), 823–841. https://doi.org/10.1103/physrev.36.823