Skip to contents

In this example, the Monte Carlo method is used to generate confidence intervals for the indirect effect in a simple mediation model with missing data where variable X has an effect on variable Y, through a mediating variable M.

Data

n <- 1000
a <- 0.50
b <- 0.50
cp <- 0.25
s2_em <- 1 - a^2
s2_ey <- 1 - cp^2 - a^2 * b^2 - b^2 * s2_em - 2 * cp * a * b
em <- rnorm(n = n, mean = 0, sd = sqrt(s2_em))
ey <- rnorm(n = n, mean = 0, sd = sqrt(s2_ey))
X <- rnorm(n = n)
M <- a * X + em
Y <- cp * X + b * M + ey
df <- data.frame(X, M, Y)

# Create data set with missing values.

miss <- sample(seq_len(dim(df)[1]), 300)
df[miss[1:100], "X"] <- NA
df[miss[101:200], "M"] <- NA
df[miss[201:300], "Y"] <- NA

Model Specification

The indirect effect is defined by the product of the slopes of paths X to M labeled as a and M to Y labeled as b. In this example, we are interested in the confidence intervals of indirect defined as the product of a and b using the := operator in the lavaan model syntax.

model <- "
  Y ~ cp * X + b * M
  M ~ a * X
  indirect := a * b
  direct := cp
  total := cp + (a * b)
"

Model Fitting

We can now fit the model using the sem() function from lavaan. We are using missing = "fiml" to handle missing data in lavaan. Since there are missing values in x, we also set fixed.x = FALSE.

fit <- sem(data = df, model = model, missing = "fiml", fixed.x = FALSE)

Monte Carlo Confidence Intervals

The fit lavaan object can then be passed to the MC() function from semmcci to generate Monte Carlo confidence intervals.

MC(fit, R = 20000L, alpha = c(0.001, 0.01, 0.05))
#> Monte Carlo Confidence Intervals
#>              est     se     R   0.05%    0.5%    2.5%  97.5%  99.5% 99.95%
#> cp        0.2335 0.0296 20000  0.1350  0.1579  0.1765 0.2913 0.3094 0.3285
#> b         0.5112 0.0298 20000  0.4177  0.4351  0.4524 0.5703 0.5899 0.6116
#> a         0.4809 0.0286 20000  0.3872  0.4069  0.4256 0.5372 0.5542 0.5737
#> Y~~Y      0.5542 0.0268 20000  0.4695  0.4860  0.5022 0.6074 0.6240 0.6411
#> M~~M      0.7564 0.0358 20000  0.6442  0.6636  0.6860 0.8262 0.8474 0.8765
#> X~~X      1.0591 0.0499 20000  0.8985  0.9326  0.9619 1.1572 1.1874 1.2185
#> Y~1      -0.0127 0.0253 20000 -0.0960 -0.0776 -0.0618 0.0377 0.0536 0.0750
#> M~1      -0.0223 0.0292 20000 -0.1127 -0.0962 -0.0803 0.0342 0.0526 0.0697
#> X~1       0.0025 0.0338 20000 -0.1094 -0.0844 -0.0645 0.0690 0.0904 0.1135
#> indirect  0.2458 0.0203 20000  0.1835  0.1939  0.2073 0.2871 0.3011 0.3142
#> direct    0.2335 0.0296 20000  0.1350  0.1579  0.1765 0.2913 0.3094 0.3285
#> total     0.4794 0.0287 20000  0.3886  0.4054  0.4233 0.5369 0.5538 0.5723

Standardized Monte Carlo Confidence Intervals

Standardized Monte Carlo Confidence intervals can be generated by passing the result of the MC() function to the MCStd() function.

fit <- sem(data = df, model = model, missing = "fiml", fixed.x = FALSE)
unstd <- MC(fit, R = 20000L, alpha = c(0.001, 0.01, 0.05))
MCStd(unstd)
#> Standardized Monte Carlo Confidence Intervals
#>             est     se     R  0.05%   0.5%   2.5%  97.5%  99.5% 99.95%
#> cp       0.2409 0.0297 20000 0.1463 0.1640 0.1815 0.2991 0.3170 0.3347
#> b        0.5128 0.0269 20000 0.4217 0.4421 0.4593 0.5649 0.5803 0.5997
#> a        0.4946 0.0255 20000 0.4085 0.4283 0.4439 0.5430 0.5583 0.5720
#> Y~~Y     0.5568 0.0251 20000 0.4703 0.4919 0.5075 0.6060 0.6208 0.6399
#> M~~M     0.7554 0.0251 20000 0.6729 0.6882 0.7051 0.8030 0.8166 0.8331
#> X~~X     1.0000 0.0000 20000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
#> indirect 0.2536 0.0188 20000 0.1927 0.2060 0.2172 0.2903 0.3030 0.3160
#> direct   0.2409 0.0297 20000 0.1463 0.1640 0.1815 0.2991 0.3170 0.3347
#> total    0.4945 0.0255 20000 0.4093 0.4262 0.4430 0.5430 0.5573 0.5757