Skip to contents

Simulation Parameters

Usage

data(params)

Format

A dataframe with 9 rows and 39 columns:

taskid

Simulation Task ID.

n

Sample size.

separation

Level of separation. 0 for moderate, -1 for low, and 1 for strong.

m

Measurement occasions.

mu_x

\(\mu_{x}\) parameter. Mean of the covariate.

sigma_x

\(\sigma_{x}\) parameter. Variance of the covariate.

mu_10

\(\mu_{10}\) parameter. Profile specific mean for profile 0 and item 1.

mu_20

\(\mu_{20}\) parameter. Profile specific mean for profile 0 and item 2.

mu_30

\(\mu_{30}\) parameter. Profile specific mean for profile 0 and item 3.

mu_40

\(\mu_{40}\) parameter. Profile specific mean for profile 0 and item 4.

lambda_t2

\(\lambda_{t2}\) parameter. Factor loading for the common trait and item 2.

lambda_s2

\(\lambda_{s2}\) parameter. Factor loading for the common state and item 2.

lambda_t3

\(\lambda_{t3}\) parameter. Factor loading for the common trait and item 3.

lambda_s3

\(\lambda_{s3}\) parameter. Factor loading for the common state and item 3.

lambda_t4

\(\lambda_{t4}\) parameter. Factor loading for the common trait and item 4.

lambda_s4

\(\lambda_{s4}\) parameter. Factor loading for the common state and item 4.

theta_11

\(\theta_{11}\) parameter. Unique state variance for item 1.

theta_22

\(\theta_{22}\) parameter. Unique state variance for item 2.

theta_33

\(\theta_{33}\) parameter. Unique state variance for item 3.

theta_44

\(\theta_{44}\) parameter. Unique state variance for item 4.

phi_0

\(\phi_{0}\) parameter. Autoregressive coefficient for profile 0.

psi_t

\(\psi_{t}\) parameter. Variance in the common trait; reflects stable between-person differences.

psi_p_11

\(\psi_{p11}\) parameter. Trait-specific item 1 variance.

psi_p_22

\(\psi_{p22}\) parameter. Trait-specific item 2 variance.

psi_p_33

\(\psi_{p33}\) parameter. Trait-specific item 3 variance.

psi_p_44

\(\psi_{p44}\) parameter. Trait-specific item 4 variance.

psi_s0

\(\psi_{s0}\) parameter. Initial-day variance of the common state; reflects variability in intoxication levels at observation start.

psi_s

\(\psi_{s}\) parameter. Residual state variance over days; captures within-person daily fluctuations not explained by trait or AR effects.

mu_11

\(\mu_{11}\) parameter. Profile specific mean for profile 1 and item 1.

mu_21

\(\mu_{21}\) parameter. Profile specific mean for profile 1 and item 2.

mu_31

\(\mu_{31}\) parameter. Profile specific mean for profile 1 and item 3.

mu_41

\(\mu_{41}\) parameter. Profile specific mean for profile 1 and item 4.

phi_1

\(\phi_{1}\) parameter. Autoregressive coefficient for profile 1.

nu_0

\(\nu_{0}\) parameter. Intercept for initial log-odds of profile 0 (vs. profile 1) when \(X = 0\).

alpha_0

\(\alpha_{0}\) parameter. Baseline log-odds of being in profile 0 across days.

kappa_0

\(\kappa_{0}\) parameter. Covariate effect on initial profile membership; higher \(X\) increases odds of profile 0.

beta_00

\(\beta_{00}\) parameter. Increased odds of staying in profile 0 if previously in that profile; reflects persistence.

gamma_00

\(\gamma_{00}\) parameter. Covariate effect on staying in profile 0; higher \(X\) increases persistence.

gamma_10

\(\gamma_{10}\) parameter. Covariate effect on switching from state to profile 0; higher \(X\) increases transition odds.

Author

Ivan Jacob Agaloos Pesigan