Skip to contents

Coerce an Object of Class simculta to a Data Frame

Usage

# S3 method for class 'simculta'
as.data.frame(x, ...)

Arguments

x

Object of class simculta.

...

Additional arguments.

Author

Ivan Jacob Agaloos Pesigan

Examples

x <- GenCULTA2Profiles(
  n = 10,
  m = 6,
  common_trait_loading = matrix(
    data = c(1, 1.25, 1.50, 1.75),
    ncol = 1
  ),
  common_state_loading = matrix(
    data = c(1, 1.5, 1.75, 2.00),
    ncol = 1
  ),
  mu_t = NULL,
  psi_t = NULL,
  mu_p = NULL,
  psi_p = NULL,
  theta = diag(4),
  mu_profile = cbind(
    c(-3, -3, -3, -3),
    c(3, 3, 3, 3)
  ),
  mu_x = 0,
  sigma_x = 1,
  nu_0 = -3.563,
  kappa_0 = 0.122,
  alpha_0 = -3.586,
  beta_00 = 2.250,
  gamma_00 = 0.063,
  gamma_10 = 0.094,
  phi_0 = 0.311,
  phi_1 = 0,
  psi_s0 = 0.151,
  psi_s = 0.290
)
as.data.frame(x)
#>    id   covariate      y1t0     y2t0       y3t0       y4t0       y1t1     y2t1
#> 1   1  0.48236947 1.3037647 3.321640  1.4157185  2.0901442 -0.1624484 4.914767
#> 2   2  0.99294364 0.6134074 2.033937  0.4115373 -1.5233829  1.8766862 3.848954
#> 3   3 -1.24639550 1.8860911 3.783625  4.7466582  3.9078727  3.6595498 1.915735
#> 4   4 -0.03348752 2.7039843 1.850319  1.0970003 -0.6784618  1.0769389 2.732426
#> 5   5 -0.07096218 3.6785650 3.973106  4.9584789  4.8689740  1.0197073 3.375581
#> 6   6 -0.75892065 3.4897155 4.715623  0.2789321  4.3518521  4.1372035 3.157064
#> 7   7 -1.03435936 4.0687524 2.778493  2.6382359  3.6560427  5.5575079 1.001928
#> 8   8 -0.63073195 0.8762377 2.592222  3.5173125  5.2557097  4.2446516 2.934286
#> 9   9  0.58680772 3.2528660 3.823421  3.3640607  0.6556269  1.1302943 3.632701
#> 10 10 -0.41632266 4.6908315 4.077399 -0.5242746  4.8891399  3.6011488 3.238195
#>         y3t1       y4t1        y1t2        y2t2      y3t2        y4t2
#> 1  1.8728673  2.4518803 -0.05928173  2.42710401  1.508709  3.66210920
#> 2  4.2386866 -0.1749965  0.33018688  1.67448740  1.182631  0.01188875
#> 3  2.4653823  4.3203500  4.18959333  3.54802775  3.675875  3.71485378
#> 4  1.6573379  0.1593718  0.90291184 -0.02053572  1.430704 -2.69862368
#> 5  2.3053974  1.8291057  3.32290593  3.92932071  2.509414  3.55344739
#> 6  0.8597136  0.4314219  4.11419694  3.92892988 -1.408554  2.09785772
#> 7  3.3805028  1.6221743  4.98999802  2.62657182  3.949717  1.07743739
#> 8  4.7343588  5.5661021  3.78550701  3.30847119  3.189293  5.17752797
#> 9  3.6122034  0.6572932  2.71851998  4.21385048  2.525594  0.29603227
#> 10 0.5960675  5.5820287  3.48645475  5.17815478 -1.061037  4.34753739
#>          y1t3     y2t3       y3t3      y4t3        y1t4     y2t4       y3t4
#> 1  0.04804128 4.185201  0.4359512  2.936750  0.06712224 3.054091 -1.7019385
#> 2  2.18944758 3.177672  4.5125678  2.886079 -0.34838968 3.091939  4.3719742
#> 3  4.18116453 3.129946  5.7471608  3.766124  3.99771102 4.816850  4.7523398
#> 4  0.88646613 1.187530  2.6974376 -2.489749  1.56346077 1.914307  0.8060320
#> 5  2.20465682 2.116690  2.0168770  3.273221  4.88181496 6.550904  5.7361792
#> 6  5.11092000 2.816391  2.3093749  1.281790  3.36198360 2.493566 -0.1632555
#> 7  3.31400820 1.637620  4.1329813  1.595920  4.27240089 2.529805  2.4890848
#> 8  5.62103425 4.186820  2.4889671  3.882864  2.76659317 5.513407  3.6584438
#> 9  1.60030786 1.575915  1.3584923  1.150118  1.83195856 1.805917  3.7163146
#> 10 2.11679926 4.624255 -2.0168118  4.522281  2.88407735 5.632468  0.7221205
#>          y4t4       y1t5     y2t5       y3t5        y4t5
#> 1   0.3243353 -0.4487972 2.618235 -0.4777822 0.007762294
#> 2  -0.3611470  0.2548806 2.664263  2.2858278 1.100689970
#> 3   4.9267074  4.0733216 1.695001  2.4577131 3.559312710
#> 4  -2.1592350  1.6517661 3.329703  4.1936780 1.180171757
#> 5   6.3887029  2.0077404 4.246073  4.1096125 4.772253420
#> 6   0.1199249  6.4632399 5.689978  1.2560223 3.417699189
#> 7  -0.9980008  4.6003590 4.240185  2.9498481 1.142447681
#> 8   5.9467400  1.1373319 3.510702  3.8197370 4.170018954
#> 9   1.0928269  2.3712507 1.882868  2.2044726 2.690283572
#> 10  5.7662610  4.6911152 6.334892  2.1012571 5.698960655